
oneM2M
Technical Report

oneM2M
Technical Report

Document Number TR-0073-
Developer_Guide_Deploying_Semantics-
V5_0_1

Document Name: Developer Guide: Deploying
Semantics

Date: 2024-03-28
Abstract: This developer guide is to describe

how developer can quickly implement
semantic functionality of the release 3.
The intended work is about a basic
scenario describing the semantic
annotation using SAREF and
oneM2M Base ontologies using the
oneM2M semantic descriptor resources
and semantic discovery and semantic
queries

Template Version: January 2017 Template Version: January 2017 (Do
not modify)

The present document is provided for future development work within oneM2M
only. The Partners accept no liability for any use of this report.

1

The present document has not been subject to any approval process by the
oneM2M Partners Type 1. Published oneM2M specifications and reports for
implementation should be obtained via the oneM2M Partners’ Publications
Offices.

About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which
address the need for a common M2M Service Layer that can be readily embedded
within various hardware and software, and relied upon to connect the myriad of
devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

(c) 2022, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI,
TTA, TTC).

All rights reserved.

The copyright and the foregoing restriction extend to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals
who have the appropriate degree of experience to understand and interpret its
contents in accordance with generally accepted engineering or other professional
standards and applicable regulations. No recommendation as to products or
vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMA-
TION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS
TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND
FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR
AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO
oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT
OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS
DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT
SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES
ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PRO-
VIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents
1 Scope
2 References

2.1 Normative references

2

2.2 Informative references
3 Definitions
4 Conventions
5 Motivation
6 System Description

6.1 Use case
6.2 Device models using a Custom Model
6.3 Device models using Semantic Modelling
6.4 Device models using Smart Device Template

7 Semantic Annotation in oneM2M
7.1 Semantic description of services using SAREF Ontology
7.2 Describing oneM2M APIs with the oneM2M Base Ontology
7.2.1 Clothes Washing Machine APIs using oneM2M
7.2.2 Custom Model API semantic description
7.2.3 Semantic Model annotation
7.2.4 SDT model annotation

8 Semantic Queries
8.1 Discovery Queries
8.2 Interoperability Queries

9 Procedures
9.1 Introduction
9.2 Implementation
9.2.1 Semantics Description Utilities
9.2.2 Semantic Query Utilities
9.2.3 Semantics representations and primitives
9.2.4 Create <semanticDescriptor>

[This is the Custom Washing Machine AE]
[Request Headers]
[Request Body]

9.2.5 Semantic Query
[Request Headers]
10 History

1 Scope
The present document provides a simple use case for guiding application devel-
opers to model physical devices in oneM2M and adding semantic annotations
that will enable interoperability of devices that are modelled in oneM2M:

• Describe the motivation for the use of semantics in oneM2M
• Description of a physical device that is to be modelled in oneM2M,
• Description of methods that can be used to model the device using oneM2M

resources and procedures,
• The semantic annotation of the devices using the oneM2M base ontology,
• The semantic queries that can be used to discover device capabilities and

3

enable interoperability,
• The call flows for implementation of the use case with a focus on the

semantic aspects.

2 References
2.1 Normative references
Normative references are not applicable in the present document.

2.2 Informative references
References are either specific (identified by date of publication and/or edition
number or version number) or nonspecific. For specific references, only the cited
version applies. For non-specific references, the latest version of the referenced
document (including any amendments) applies.

The following referenced documents are not necessary for the application of the
present document but they assist the user with regard to a particular subject
area.

• [i.1] oneM2M Drafting Rules. > NOTE: Available at: http://www.onem
2m.org/images/files/oneM2M-Drafting-Rules.pdf.

• [i.2] oneM2M TS-0011: “Common Terminology”.

• [i.3] oneM2M TS-0012: “Base Ontology”.

• [i.4] oneM2M TS-0030: “Generic Interworking”.

• [i.5] oneM2M TS-0001: “Functional Architecture”.

• [i.6] oneM2M TS-0004: “Service Layer Core Protocol”.

• [i.7] oneM2M TS-0009: “HTTP Protocol Binding”.

• [i.8] ETSI TS(R) 103 783: SAREF: SDT interoperability and oneM2M
base ontology alignment

3 Definitions
For the purposes of the present document, the terms and definitions given in
oneM2M TS-0011 [i.2] apply.

AE Application Entity

CSE Common Service Entity

IPE Interworking Proxy Element

nodn non-oneM2M device node

4

http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf
http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf

SAREF Smart Applications REFerence ontology

4 Conventions
The key words “Shall”, “Shall not”, “May”, “Need not”, “Should”, “Should
not” in the present document are to be interpreted as described in the oneM2M
Drafting Rules [i.1].

5 Motivation
The assumption of many existing oneM2M applications is that they interact
with other oneM2M applications through known resource structures. They
either create the resources themselves or are configured to use specific resources.
Information is typically stored in containers, sometimes as base64-encoded
content instances, with the implicit assumption that applications have a-priori
knowledge of the syntax and semantics of this information.

Depending on a-priori knowledge of the structures and data works well for
small-scale vertical deployments of IoT devices. When the deployment evolves to
include new devices, the existing applications change to reflect the new additions.
However, in larger systems of IoT devices where the IoT devices may be a
part of a legacy deployment or more than a single vertical solution, changes
to all existing applications may become impractical. To enable growth and
diversity of IoT devices in large heterogenous settings, applications need to be
able to discover the structure and meaning of data from devices and how to
use the services of the devices. In oneM2M Release 1 support for discovery of
resources based on specific attribute values and the use of labels was defined.
The agreement of a fixed set of labels (using a-priori knowledge) can be a viable
solution for small deployments.

For medium or large deployments of heterogeneous IoT devices a more expressive
approach for describing and discovering IoT devices is provided by oneM2M.
Each type of device in a heterogeneous deployment can model services and data
in the oneM2M Service Layer using different structures and syntax of data. For
example, temperature sensors may report measurements using different units
such as Celsius, Fahrenheit and Kelvin. Additionally, those IoT devices may
measure different aspects, such as indoor temperature, outdoor temperature,
refrigerator temperature, etc., and the representation of the measurement may
differ as well.

With semantic annotations in oneM2M, all the different aspects of IoT devices
can be described using RDF triples, which is a standard semantic format. The
vocabulary used for a semantic description can be defined according to an
ontology such as SAREF. With semantic discovery, applications can describe
precisely what information they need or can deal with. This is powered by

5

Figure 1: Figure 1: Semantic understanding of device and data in IoT deploy-
ments

Figure 2: Figure 2: Meaningfulness of data from IoT devices

6

specifying a semantic filter using the SPARQL query language. The SPARQL
filter is matched against the respective semantic annotations of each resource
within the discovery scope. This feature in oneM2M helps applications to
properly handle the data from the IoT devices.

Besides differences in the data from an IoT device in oneM2M the information
model of devices can be modelled in a variety of ways. As with most IoT
platforms, oneM2M supports custom information models that are defined for
a specific use case and work well in small scale or single vertical scenarios.
Another method that oneM2M defines to model devices is based on the semantic
description of a device that is mapped to a resource structure (see TS-0030).
A third approach to modelling devices in oneM2M is the use of Smart Device
Templates (see TS-0023).

With all these options available to model a device the ability to have a-priori
knowledge of a device model becomes less likely as IoT deployments scale beyond
small vertical use cases. The oneM2M Base Ontology addresses this and enables
developers of these different models to make them interoperable if the appropriate
semantic annotations are made and semantic filtering is used to discover the
appropriate API for a model. The focus of the remainder of this developer guide
is to demonstrate this process.

6 System Description
6.1 Use case
The example scenario describes a clothes-washing machine and an application
to monitor and control the IoT enabled product. This clause will show three
different oneM2M resource tree models of the clothes washing machine and the
call flows to create those models. The logic and call flows necessary for a client
application to control and monitor the status of the clothes-washing machine is
also described. In the next clause the washing machine capabilities are described
using the SAREF ontology so that the client application can discover the washing
machines. Additionally, the oneM2M Base Ontology describes how to use the
device and commands that these clothes washing machines offer so that the
client application can control any of them without regard to which resource tree
model represents them.

This simplified clothes-washing machine has enough features to demonstrate the
difference between the different modelling approaches supported in oneM2M. The
concepts shown here can be applied to a full featured clothes-washing machine
or any other IoT enabled device for that matter. The features and capabilities
that are modelled are:

• The washing machine has been produced by manufacturer XYZ.
• XYZ describes this type of washing machine as “Very cool Washing Ma-

chine”.

7

• The model of the type of washing machine is XYZ_Cool.
• The state of the washing machine can take the values “WASHING” or

“STOPPED” or “ERROR”.
• The washing machine supports three commands: ON, OFF, Toggle
• The washing machine is in My_Bathroom.

Figure 3: Figure 3: Functional Architecture for Smart Clothes Washing Machine

The clothes-washing machine is modelled as a non-oneM2M device (nodn) for
all three models. However, everything in this guide applies equally if these were
modelled as native oneM2M devices. There is no difference in the model or
the call flows for everything to the right of the Interworking Proxy Element
(IPE) shown in the figure below. Figure 4 shows a generic set of oneM2M call
flow for the clothes washing machine (and the IPE) and the client application
communicating through the oneM2M CSE. The level of detail provided here
applies to all the different modelling approaches for the clothes washing machine.
Differences in the call flows that are dependent on the model used, shown in
blue shading, are further detailed where the specific models are described.

The messages shown in Figure 4 are further described here:

• Register the AE/IPE. In oneM2M an IPE is a type of AE that is intended
to communicate with nodn’s. The IPE is responsible for registering itself
and creating the appropriate resources in a oneM2M CSE to model the
nodn as if it were a oneM2M device. The result is that a washing machine
that is native oneM2M and a washing machine that is non-oneM2M can
be modelled the same way and the client applications cannot tell the
difference.

• Create Polling Channel. A <pollingChannel> resource is used by
applications or devices that are not reachable from the CSE that need to
receive notification requests. This happens when, for example, the device
is in a home with a firewall that prevents direct requests to the device
from outside the local network in the home. [It is also appropriate for IoT
devices that communicate using cellular networks].

• Create Information Model. The IPE creates all the resources needed
to provide the status and enable control of the clothes washing machines.
These messages (in almost all cases multiple resources are used) will be

8

Figure 4: Figure 4: Generic oneM2M Call Flows

9

described with the details relevant to the specific model in later sub-clauses.
This includes creating subscriptions to the resources that are used to enable
the application to control the clothes washing machines.

• Register Client application AE. Client applications are also modelled
as <AE> resources and register in the oneM2M CSE.

• Discover Washing Machine. An application designed to control the
clothes washing machines produced by manufacturer XYZ will be able to
discover them using a-priori knowledge of labels that are used to identify
those washing machines. Later we will see how using the semantics ca-
pabilities of oneM2M and the SAREF ontology the same application can
discover and control clothes washing machines from any manufacturer.

• Retrieve clothes washing machine resources. The client application
generally has a user interface to show the status and allow control of the
clothes washing machine. The client application will retrieve the specific
resources that it needs to provide that capability. The application may have
more features than a given washing machine model supports or, similarly
the clothes washing machine model may expose more features than the
client application needs. This step will use SPARQL queries to dynamically
determine what resources are needed by the client application.

• Subscribe to resources. The client application is made aware of changes
in the state of a clothes washing machine by receiving notifications of
the changes. The client application first subscribes to the resources that
contain information that it needs.

• Update the model resources. When the state of the clothes washing
machine changes, the change in state will be reflected in the oneM2M
CSE.

• Notification of state changes. When resources in the oneM2M CSE are
created or updated the CSE will send notifications to applications that are
subscribed to the resources. A client application that receives a notification
can present this information to users or take some other actions.

• Send commands to clothes washing machine. The client application
exposes to a user features or capabilities of the clothes washing machine.
The client application sends the appropriate oneM2M primitives, based on
the model, to use those features or capabilities.

• Generate notification for clothes washing machine. When the client
application sends a oneM2M primitive to a resource that controls the clothes
washing machine, a notification is generated (assuming notifications were
created). In our scenario, since the clothes washing machine and the IPE
are behind a firewall and therefore not reachable, the notification for the
IPE are stored in the CSE and made available to the IPE via the long
polling process.

• Poll for notifications. Because the IPE cannot receive notifications
directly, it must use the long polling procedure to retrieve its notifications
from the CSE. The IPE processes notifications by sending commands to
the clothes washing machine using the API of the clothes washing machine.

10

6.2 Device models using a Custom Model
Using oneM2M to represent devices allows for unlimited flexibility. A device
model can be customized to support the needs of the manufacturer or system
architecture. The resource tree structure shown here represents a custom model
that has a single container for reading the status of the washing machine and a
separate container to set or command the washing machine.

Figure 5: Figure 5: Custom washing machine model

Only the messages highlighted in light blue are described here as the rest of the
messages are the same as in the general call flow described in clause 6.1.

• Create Information Model. The IPE creates all the resources needed to for
the clothes washing machine that it knows how to model a priori. This
IPE is developed with awareness of the clothes washing machine interface
and the model that it is creating in the oneM2M CSE.

• A <container> resource is created for the Status information of the clothes
washing machine. The IPE creates <contentInstance> resources that have
the following content when there are any changes in the status of the
clothes washing machine:

{
"WashingMachineStatus ": "WASHING", // Or "STOPPED", "ERROR"
}

11

Figure 6: Figure 6: Custom Model oneM2M Call Flows

12

• A <container> resource is created for the command and control of the
clothes washing machine. When the client application is setting the state
of the device the following payload can be provided in a <contentInstance>
resource:

{
"state": "ON", // Or "OFF", "Toggle"
}

• A <subscription> resource is created as a child of the command <con-
tainer> resource by the IPE. This will cause a notification to be sent to
the IPE when a new command is made by an application.

6.3 Device models using Semantic Modelling
A SAREF description of the washing machine is mapped to the resource structure
shown in Figure 6 using the rules described in TS-0030 and TS-0012. A complete
derivation of this example is shown in [ref to TS-0012] Annex B.1.3.3.

The description of our (simplified) washing machine using SAREF ontology is
expanded upon here:

• The state of the washing machine is given by SAREF:state: Washing-
MachineStatus that can take the values “WASHING” or “STOPPED” or
“ERROR”.

• The washing machine has an actuating function: StartStopFunction which
has three commands:

– ON_Command
– OFF_Command
– Toggle_Command

• The washing machine has also a metering function: MonitoringFunction
that sets the WashingMachineStatus.

• The washing machine is located at My_Bathroom.

Later we will see that the description here has triples that are intended to help
define the resosurce tree structure according to the rules described in TS-0030
and TS-0012. However, when the description of the clothes-washing machine is
put into a <semanticdescriptor> some are removed because they do not offer
information useful for SPARQL queries. >

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix oneM2M: <http://www.onem2m.org/ontology/Base_Ontology/> .
@prefix saref: <https://saref.etsi.org/core/> .
@prefix s4bldg: <https://saref.etsi.org/saref4bldg/> .
@prefix sn: <http://www.XYZ.com/WashingMachines/SerialNumbers/> .

13

sn:WASH_XYZ
a <http://www.XYZ.com/WashingMachines#XYZ_Cool> ;
rdfs:comment "Very cool Washing Machine" ;
saref:hasFunction sn:WASH_XYZ-MonitoringFunction , sn:WASH_XYZ-StartStopFunction ;
saref:hasManufacturer "XYZ" ;
saref:hasService sn:WASH_XYZ-MonitorService , sn:WASH_XYZ-SwitchOnService ;
saref:hasState sn:WASH_XYZ-WashingMachineStatus ;
s4bldg:isContainedIn sn:My_Bathroom .

sn:WASH_XYZ-StartStopFunction-OFF_Command a saref:OffCommand .
sn:WASH_XYZ-StartStopFunction-Toggle_Command a saref:ToggleCommand .
sn:WASH_XYZ-StartStopFunction-ON_Command a saref:OnCommand .
sn:WASH_XYZ-MonitoringFunction a saref:SensingFunction ;

saref:hasCommand sn:WASH_XYZ-MonitoringFunction-WashingMachineStatus .

sn:WASH_XYZ-StartStopFunction a saref:ActuatingFunction ;
saref:hasCommand sn:WASH_XYZ-StartStopFunction-Toggle_Command ,

sn:WASH_XYZ-StartStopFunction-OFF_Command ,
sn:WASH_XYZ-StartStopFunction-ON_Command .

• The procedure defined in TS-0012 require the IPE to parse the semantic
description to generate a total of three custom <flexContainer> definitions
to support the structure shown in Figure 7. The schemas generated are
added as the content of a <contentInstance> resource under a container
for these custom definitions. The locations of these schemas are referenced
in the container definition attribute of the respective <flexContainer>.

• two <flexContainer> child-resources for Services and their <semanticDe-
scriptor>s are used for modelling the services SwitchOnService and Moni-
torService;

• the SwitchOnService in turn has a child resource of type <flexContainer>
for Operations which exposes the Toggle_Command;

• one customAttribute of the SwitchOnService <flexContainer> is used for
holding the values for InputDataPoint: BinaryInput;

• one customAttribute of the MonitorService <flexContainer> is used for
holding the values for OutputDataPoint: WashingMachineStatus.

Only the messages highlighted in light blue are described here as the rest of the
messages are the same as in the general call flow described in clause 6.1.

• Create Information Model. The IPE creates all the resources needed to for
the clothes washing machine that it generates from parsing the semantic
description. This IPE is developed with awareness of the clothes washing
machine interface but without awareness of the model that it is creating
in the oneM2M CSE. This requires extra logic to parse the RDF triples
to generate custom container definitions, which is not included in this
example as only the output of the parsing process is shown.

14

Figure 7: Figure 7: SAREF Washing Machine Model

15

Figure 8: Figure 8: SAREF Model oneM2M Call Flows

16

• A <flexContainer> resource is created for the MonitorService with a single
custom attribute washingMachineStatus. The IPE updates this resource
with the following content when there are any changes in the status of the
clothes washing machine:

{
"WashingMachineStatus": "WASHING", // Or "STOPPED", "ERROR"

}

• A <flexcontainer> resource is created for the SwitchOnService that al-
lows command and control of the clothes washing machine. The client
application sets the state of the device by updating the resource with the
following payload:

{
"BinaryInput": false

}

• A <flexcontainer> resource is created for the Toggle command as a child
of the SwitchOnService. This action is used to change the current state of
the clothes washing machine. The client application toggles the state of
the device by sending an update request to the resource with an empty
payload.

• A <subscription> resource is created as a child of the Toggle command
<flexContainer> resource by the IPE. This will cause a notification to be
sent to the IPE when a new command is made by an application.

• A <subscription> resource is created as a child of the SwitchOnService
<flexContainer> resource by the IPE. This will cause a notification to be
sent to the IPE when a new command is made by an application

6.4 Device models using Smart Device Template
TS-0023 defines a framework for developing common standardized models of
devices. There are multiple device specific domains defined and new models
and domains are added in each release of oneM2M. The Home Domain contains
a deviceClothesWasher model that aligns with the device that we are trying
to model. The resource tree structure of the deviceClothesWasher is shown in
Figure 5. There are many more potential services exposed in this model than our
example simplified washing machine provides. The elements in bold are required
for a compliant SDT model. Services in the model that are not supported by our
simple clothes-washing machine are not implemented unless they are required. It
should be noted that using an SDT model is the only model that can be certified
by a certification authority.

When using a SDT model from TS-0023 to represent a physical device it is
necessary to map the functionality of the device to be modelled with the existing
modules defined for the SDT device.

17

Figure 9: Figure 9: SDT washing machine model

18

Meta-Data Device Value SDT modelling
Manufacturer XYZ The SDT model

captures this
information in a
dmDeviceInfo
ModuleClass

Manufacturer
description

“Very cool Washing
Machine”

The SDT model
captures this
information in a
dmDeviceInfo
ModuleClass

Model Type XYZ_Cool The SDT model
captures this
information in a
dmDeviceInfo
ModuleClass

Supported Commands ON
OFF
Toggle\

The SDT model enables
the ON and OFF
commands using the
state attribute of the
binarySwitch
ModuleClass. The
Toggle command is
supported by the toggle
ActionModule.

State “WASHING”
“STOPPED”
“ERROR”

The SDT model offers
runState ModuleClass
which supports more
enumerations that
indicated by our
product.

Location My_Bathroom The SDT model does
not have an attribute
specifically for Location.

Only the messages highlighted in light blue are described here as the rest of the
messages are the same as in the general call flow described in clause 6.1.

• Create Information Model. The IPE creates all the resources needed to
for the clothes washing machine that it knows how to model a priori using
SDT. This IPE is developed with awareness of the clothes washing machine
interface and the model that it is creating in the oneM2M CSE.

• A <flexContainer> resource is created for the runState with the custom
attribute currentMachineState and MachineStates. The IPE updates this
resource with the following content when there are any changes in the

19

Figure 10: Figure 10: SDT model oneM2M Call Flows

20

status of the clothes washing machine:

{
"CurrentMachineState ": 3, // Or [1,3,5,6]
}

• A <flexcontainer> resource is created for the binarySwitch module that
allows command and control of the clothes washing machine. The client
application sets the state of the device by updating the resource with the
following payload:

{
"state": False, // Or True
}

• A <flexcontainer> resource is created for the Toggle command as a child
of the binarySwitch. This action is used to change the current state of
the clothes washing machine. The client application toggles the state of
the device by sending an update request to the resource with an empty
payload.

• A <flexcontainer> resource is created for the clothesWasherJobMode
with custom attributes currentJobMode and jobModes. This resource is
mandatory for the deviceClothesWasher SDT model, but the IPE will set
the states and never modify them.

• A <subscription> resource is created as a child of the toggle <flexCon-
tainer> resource by the IPE. This will cause a notification to be sent to
the IPE when a new command is made by an application.

• A <subscription> resource is created as a child of the binarySwitch com-
mand <flexContainer> resource by the IPE. This will cause a notification
to be sent to the IPE when a new command is made by an application.

7 Semantic Annotation in oneM2M
7.1 Semantic description of services using SAREF Ontology
The Smart Applications REFerence ontology (SAREF) is intended to enable
interoperability between solutions from different providers and among various
activity sectors in the Internet of Things (IoT), thus contributing to the devel-
opment of the global digital market. SAREF explicitly specifies the recurring
core concepts in the Smart Applications domain, the main relationships between
these concepts, and axioms to constrain the usage of these concepts and relation-
ships. SAREF is based on the fundamental principles of reuse and alignment
of concepts and relationships that are defined in existing assets, modularity to
allow separation and recombination of different parts of the ontology depending
on specific needs, extensibility to allow further growth of the ontology, and
maintainability to facilitate the process of identifying and correcting defects,
accommodate new requirements, and cope with changes in (parts of) SAREF. We

21

can use the SAREF ontology to describe the services of the washing machine and
the oneM2M Base Ontology to describe the oneM2M interface for the services.

The services of any clothes washing machine are fundamentally the same regard-
less of which model is used. Especially in this case where we are describing the
same clothes washing machine. The following RDF triples describe the services
and functions of our clothes washing machine.

@prefix saref: <https://saref.etsi.org/core/> .
@prefix s4bldg: <> .
@prefix xsd: <> .
@prefix rdfs: <> .
@prefix sn: <> .
@prefix m2m: <> .

sn:WASH_XYZ_RESOURCE_ID a <http://www.XYZ.com/WashingMachines#XYZ_Cool> ;
rdfs:comment "Very cool Washing Machine" ;
saref:hasFunction sn:WASH_XYZ-MonitoringFunction, sn:WASH_XYZ-StartStopFunction ;
saref:hasManufacturer "XYZ" ;
saref:hasService sn:WASH_XYZ-MonitorService , sn:WASH_XYZ-SwitchOnService ;
saref:hasState sn:WASH_XYZ-WashingMachineStatus ;
s4bldg:isContainedIn sn:My_Bathroom ;
m2m:oneM2MTargetURI "RESOURCE_ID" ;
m2m:hasOperation sn:WASH_XYZ-SwitchOnService_RESOURCE_ID,

sn:WASH_XYZ-StartStopFunction-ON_Command_RESOURCE_ID,
sn:WASH_XYZ-StartStopFunction-OFF_Command_RESOURCE_ID,
sn:WASH_XYZ-StartStopFunction-TOGGLE_Command_RESOURCE_ID,
sn:WASH_XYZ-MonitoringFunction-WashingMachineStatus_RESOURCE_ID .

These triples will be placed into a <semanticDescription> resource in each
of the models. Notice that these triples have a token “RESOURCE_ID” in
several places that will be replaced at execution time with a resource identifier or
resource address related to the parent of this particular <semanticDescriptor>.

7.2 Describing oneM2M APIs with the oneM2M Base On-
tology
7.2.1 Clothes Washing Machine APIs using oneM2M
Because the resource tree structure for each of the models is different the oneM2M
primitives needed to access the services of the clothes washing machine will also
be different. However, the goal for interworking device models is to allow a user
to issue the same command to perform an operation regardless of which model is
used. This can be approximated in a dynamic manner using the oneM2M base
ontology to describe each of the services offered by the device and the resources
that provide access to those services. For example, the washing machine that we
have described offers the following operations:

22

• TURN ON WASHING MACHINE
• TURN OFF WASHING MACHINE
• TOGGLE THE WASHING MACHINE STATUS
• GET STATUS OF WASHING MACHINE

The oneM2M primitives to execute these operations are dependent on the resource
tree structure used to model the washing machine. For example, to determine
the status of the washing machine for each model the following oneM2M requests
and responses are used:

Model Request Response
SDT RETRIEVE /cseBase-

Name/IPE_ROOT/deviceclothesWasher/runState
{ ” currentMachineState
“: 3
”machineStates”:
[1,3,5,6]
“currentJobState”: 6
“jobStates”:[2,3,4,5,6]
“progressPercentage”:95.0
}

SAREF RETRIEVE
/cseBaseName/IPE_ROOT/My-
WashingMachine/sarefWashingMachine/MonitorService

{ “WashingMachineSta-
tus”:WASHING
}

Custom RETRIEVE /cseBase-
Name/IPE_ROOT/myWashingMachine/Status/la

{ “WashingMachineSta-
tus”:WASHING
}

Similarly, to command the washing machine to STOP the following oneM2M
primitives are sent:

Model Request
SDT UPDATE /cseBase-

Name/IPE_ROOT/deviceClothesWasher/binarySwitch
{“state”: False }

SAREF UPDATE
/cseBaseName/IPE_ROOT/My-
WashingMachine/SwitchOnService
{“BinaryInput”: False}

Custom CREATE /cseBase-
Name/IPE_ROOT/myWashingMachine/Command
{“OFF”}

23

7.2.2 Custom Model API semantic description
The specific primitive requests described in clause 7.2.1 are described in
RDF triples using the oneM2M base ontology. The classes of interest in the
oneM2M base ontology are: m2m:oneM2MTargetURI, m2m:hasDataRestriction,
m2m:oneM2MMethod.

@prefix saref: <https://saref.etsi.org/core/> .
@prefix s4bldg: <> .
@prefix xsd: <> .
@prefix rdfs: <> .
@prefix sn: <> .
@prefix m2m: <> .

sn:WASH_XYZ-StartStopFunction-ON_Command_RESOURCE_ID a m2m:Operation, <https://saref.etsi.org/core/OnCommand> ;
m2m:oneM2MTargetURI "/myWashingMachine/command";
m2m:hasDataRestriction "ON";
m2m:oneM2MMethod "CREATE" .

sn:WASH_XYZ-StartStopFunction-OFF_Command_RESOURCE_ID a m2m:Operation, <https://saref.etsi.org/core/OffCommand> ;
m2m:oneM2MTargetURI "/myWashingMachine/command";
m2m:hasDataRestriction "OFF";
m2m:oneM2MMethod "CREATE" .

sn:WASH_XYZ-StartStopFunction-TOGGLE_Command_RESOURCE_ID a m2m:Operation, <https://saref.etsi.org/core/ToggleCommand> ;
m2m:oneM2MTargetURI "/myWashingMachine/command";
m2m:hasDataRestriction "TOGGLE";
m2m:oneM2MMethod "CREATE" .

sn:WASH_XYZ-MonitoringFunction-WashingMachineStatus_RESOURCE_ID a m2m:Operation, <https://saref.etsi.org/core/GetCommand> ;
m2m:oneM2MTargetURI "/myWashingMachine/status";
m2m:oneM2MMethod "RETRIEVE" .

7.2.3 Semantic Model annotation
The specific primitive requests described in clause 7.2.1 are described in
RDF triples using the oneM2M base ontology. The classes of interest in the
oneM2M base ontology are: m2m:oneM2MTargetURI, m2m:hasDataRestriction,
m2m:oneM2MMethod and m2m:oneM2Mattribute.

@prefix saref: <https://saref.etsi.org/core/> .
@prefix s4bldg: <> .
@prefix xsd: <> .
@prefix rdfs: <> .
@prefix sn: <> .
@prefix m2m: <> .

24

sn:WASH_XYZ-StartStopFunction-ON_Command_RESOURCE_ID a m2m:Operation, <https://saref.etsi.org/core/OnCommand> ;
m2m:oneM2MTargetURI "/My-WashingMachine/SwitchOnService";
m2m:oneM2Mattribute "BinaryInput" ;
m2m:oneM2MMethod "UPDATE" ;
m2m:hasDataRestriction "True".

sn:WASH_XYZ-StartStopFunction-OFF_Command_RESOURCE_ID a m2m:Operation, <https://saref.etsi.org/core/OffCommand> ;
m2m:oneM2MTargetURI "/My-WashingMachine/SwitchOnService";
m2m:oneM2Mattribute "BinaryInput" ;
m2m:oneM2MMethod "UPDATE" ;
m2m:hasDataRestriction "False".

sn:WASH_XYZ-MonitoringFunction-WashingMachineStatus_RESOURCE_ID a m2m:Operation, <https://saref.etsi.org/core/GetCommand> ;
m2m:oneM2MTargetURI "/My-WashingMachine/sarefWashingMachine";
m2m:oneM2MMethod "RETRIEVE" ;
m2m:oneM2Mattribute "WashingMachineStatus" .

7.2.4 SDT model annotation
The specific primitive requests described in clause 7.2.1 are described in
RDF triples using the oneM2M base ontology. The classes of interest in the
oneM2M base ontology are: m2m:oneM2MTargetURI, m2m:hasDataRestriction,
m2m:oneM2MMethod and m2m:oneM2Mattribute.

@prefix saref: <https://saref.etsi.org/core/> .
@prefix s4bldg: <> .
@prefix xsd: <> .
@prefix rdfs: <> .
@prefix sn: <> .
@prefix m2m: <> .

sn:WASH_XYZ-StartStopFunction-ON_Command a m2m:Operation, <https://saref.etsi.org/core/OnCommand> ;
m2m:oneM2MTargetURI "/deviceClothesWasher/binarySwitch";
m2m:oneM2Mattribute "powerState" ;
m2m:hasDataRestriction "True";
m2m:oneM2MMethod "UPDATE" .

sn:WASH_XYZ-StartStopFunction-OFF_Command a m2m:Operation, <https://saref.etsi.org/core/OffCommand> ;
m2m:oneM2MTargetURI "/deviceClothesWasher/binarySwitch";
m2m:oneM2Mattribute "powerState" ;
m2m:hasDataRestriction "False";
m2m:oneM2MMethod "UPDATE" .

sn:WASH_XYZ-StartStopFunction-TOGGLE_Command a m2m:Operation, <https://saref.etsi.org/core/ToggleCommand> ;
m2m:oneM2MTargetURI "/deviceClothesWasher/binarySwitch/toggle";
m2m:oneM2MMethod "UPDATE" .

25

sn:WASH_XYZ-MonitoringFunction-WashingMachineStatus a m2m:Operation ;
m2m:oneM2MTargetURI "/deviceClothesWasher/runState";
m2m:oneM2Mattribute "currentMachineState" ;
m2m:oneM2MMethod "RETRIEVE" .

8 Semantic Queries
This section describes the semantic queries and how the responses can be used to
achieve interoperability. Generally, these queries are executed by an application
that is designed to use the IoT devices.

8.1 Discovery Queries
By using the oneM2M Base Ontology in the <semanticDescriptor> resources
we can send queries to the oneM2M CSE to find the services offered by a device
and further query those services to discover the oneM2M primitives to access
those services.

Here is a list of queries that we will support for all three of the models:

Query 1: Find all washing machines of manufacturer XYZ.

PREFIX sn: <http://www.XYZ.com/WashingMachines#XYZ_Cool>
PREFIX m2m: <https://git.onem2m.org/MAS/BaseOntology/raw/master/base_ontology.owl#>
PREFIX saref: <https://saref.etsi.org/core/>

SELECT ?res ?wm
WHERE {

?wm a sn:XYZ_Cool .
?wm m2m:oneM2MTargetURI ?res .

}

This lists 3 washing machines

res wm
“myWashingMachine” http://www.XYZ.com/WashingMachines#XYZ_CoolWASH_XYZ_myWashingMachine
“My-WashingMachine” http://www.XYZ.com/WashingMachines#XYZ_CoolWASH_XYZ_My-

WashingMachine
“deviceClothesWasher” http://www.XYZ.com/WashingMachines#XYZ_CoolWASH_XYZ_deviceClothesWasher

Query 2: List all the commands offered by a specific washing machine

PREFIX sn:<http://www.XYZ.com/WashingMachines#>
PREFIX m2m: <https://git.onem2m.org/MAS/BaseOntology/raw/master/base_ontology.owl#>
PREFIX saref: <https://saref.etsi.org/core/>

26

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?wm ?operation ?command
WHERE {

?wm m2m:hasOperation ?operation .
?operation a ?command .
VALUES ?wm {<http://www.XYZ.com/WashingMachines#XYZ_CoolWASH_XYZ_myWashingMachine>} .
?command rdfs:subClassOf saref:Command

}

This lists the operations and commands and functions associated with the
commands

wm operation command
http://www.XYZ.com/WashingMachines#XYZ_CoolWASH_XYZ_myWashingMachinehttp://www.XYZ.com/WashingMachines#XYZ_CoolWASH_XYZ-

StartStopFunction-
ON_Command_myWashingMachine

saref:OnCommand

http://www.XYZ.com/WashingMachines#XYZ_CoolWASH_XYZ_myWashingMachinehttp://www.XYZ.com/WashingMachines#XYZ_CoolWASH_XYZ-
StartStopFunction-
OFF_Command_myWashingMachine

saref:OffCommand

http://www.XYZ.com/WashingMachines#XYZ_CoolWASH_XYZ_myWashingMachinehttp://www.XYZ.com/WashingMachines#XYZ_CoolWASH_XYZ-
StartStopFunction-
TOGGLE_Command_myWashingMachine

saref:ToggleCommand

http://www.XYZ.com/WashingMachines#XYZ_CoolWASH_XYZ_myWashingMachinehttp://www.XYZ.com/WashingMachines#XYZ_CoolWASH_XYZ-
MonitoringFunction-
WashingMachineStatus_myWashingMachine

saref:GetCommand

8.2 Interoperability Queries
The following queries demonstrate how interoperability is achieved using seman-
tics in oneM2M. Using the results of the queries above we can issue the following
types of queries to determine exactly how to use the services of the washing
machines, without regard the way it was modeled. This query shows how to use
the saref:GetCommand for the SDT model of the washing machine

Query 3: How do I use saref:GetCommand of the SDT washing
machine

PREFIX m2m: <https://git.onem2m.org/MAS/BaseOntology/raw/master/base_ontology.owl#>
PREFIX saref: <https://saref.etsi.org/core/>

SELECT ?sarefCommand ?method ?targetURI ?attr ?res
WHERE {

?wm m2m:hasOperation ?operation .
?operation a m2m:Operation .
?operation m2m:oneM2MMethod ?method .

27

optional {?operation m2m:hasDataRestriction ?res} .
optional {?operation m2m:oneM2Mattribute ?attr} .
?operation a ?sarefCommand .
?operation m2m:oneM2MTargetURI ?targetURI .
VALUES ?wm {<http://www.XYZ.com/WashingMachines#XYZ_CoolWASH_XYZ_deviceClothesWasher>} .
VALUES ?sarefCommand {saref:GetCommand}

}

The result of executing query 3 is:

sarefCommand Method targetURI Attr res
“RETRIEVE” “/deviceClothesWasher/runState”“currentMachineState”

Query 3 can be modified for demonstration purposes to show the response for all
three washing machines by removing the line beginning with “VALUES ?wm”.
The result of this query can be compared with the expected responses described
in clause 7.2.1.

sarefCommand method targetURI attr res
“RETRIEVE” “/deviceClothesWasher/runState”“currentMachineState”
“RETRIEVE” “/My-

WashingMachine/sarefWashingMachine/
MonitorSer-
vice”

“WashingMachineStatus”

“RETRIEVE” “/myWashingMachine/status/la”

Query 4: How do I use all commands of the washing machine modeled
with SDT

SELECT ?sarefCommand ?method ?targetURI ?attr ?res
WHERE {

?wm m2m:hasOperation ?operation .
?operation a m2m:Operation .
?operation m2m:oneM2MMethod ?method .
optional {?operation m2m:hasDataRestriction ?res} .
optional {?operation m2m:oneM2Mattribute ?attr} .
?operation a ?sarefCommand .
?operation m2m:oneM2MTargetURI ?targetURI .
VALUES ?wm {<http://www.XYZ.com/WashingMachines#XYZ_CoolWASH_XYZ_deviceClothesWasher>} .
VALUES ?sarefCommand {saref:GetCommand saref:OnCommand saref:OffCommand saref:ToggleCommand}
}

ORDER BY ?sarefCommand

This query can be issued after discovering the appropriate device to dynamically
build the commands needed to perform operations on the device.

28

sarefCommand method targetURI attr res
saref:GetCommand“RETRIEVE” “/deviceClothesWasher/runState”“currentMachineState”
saref:OffCommand“UPDATE” “/deviceClothesWasher/binarySwitch”“powerState” “False”
saref:OnCommand“UPDATE” “/deviceClothesWasher/binarySwitch”“powerState” “True”
saref:ToggleCommand“UPDATE” “/deviceClothesWasher/binarySwitch/toggle”

The SPARQL query that is used is a critical component of the ability to dy-
namically determine the API of the model. The tokens following the SELECT
statement are variables that will be included in the response. For this use case
we need to know what oneM2M primitive to send to a CSE to perform the
desired command. The method implies the type of resource that is at the targe-
tURI. An UPDATE method implies that the targetURI is a <flexContainer>
whereas if the method is CREATE then the resource type being created will
be a <contentInstance>. In the case of a <flexContainer> “attr” specifies the
custom attribute that needs to be updated and the “res” specifies the value to
use in that attribute.

If we were designing a smartphone application to control the washing machine it
might look like the wireframe shown below.

Figure 11: Figure 11: Sample application wireframe

29

9 Procedures
9.1 Introduction
Previous clauses describe the use case, the call flows, the semantic description
of our device and the SPARQL queries that we can use based on the semantic
description that we created. As you will see in this section, the values returned
from a query are fully dependent on the query issued. The oneM2M CSE will
pass the query results back in the format defined by SPARQL query results.
This example receives a JSON response (the query is sent using XML just to
highlight that this can be done).

This clause will show the actual oneM2M primitives that implement the use case
described above. This guide will focus on the semantic description resources and
the semantic queries. The specific primitives needs to create the <AE>, <con-
tainer>, and <flexcontainer> resources have been covered in other documents
in oneM2M.

9.2 Implementation
9.2.1 Semantics Description Utilities
The requirements for the creation of a <semanticDescription> resource include
base64 encoding the ‘dsp’ attribute. There are many libraries that do this
operation and for this example python was used.

import base64

def smdEncode(description):
msgAscii = description.encode('ascii')
b64 = base64.b64encode(msgAscii)
descriptionb64 = b64.decode('ascii')
return descriptionb64

def smdDecode(message):
b64d = message.encode('ascii')
msgdAscii = base64.b64decode(b64d)
return msgdAscii.decode('ascii')

9.2.2 Semantic Query Utilities
When sending a SPARQL query as a request parameter for a oneM2M primitive,
the query must be “url” encoded. There are many libraries that do this operation
and for this example python was used.

import urllib.parse

def encodedSparqlQuery(query):

30

return urllib.parse.quote(query, safe='')

9.2.3 Semantics representations and primitives
In oneM2M the <semanticDescriptor> resource is used to provide semantic anno-
tations, such as the ones in clause 7. Semantic annotations can use the oneM2M
base ontology as well as external ontologies, such as SAREF. The oneM2M base
ontology is primarily used to discover how to use the APIs for devices that are
modelled in oneM2M. External Ontologies are used to describe the capabilities
of the device being models or other features of data that is available in oneM2M,
i.e., ontologies could describe the content of data or metadata. A <semanticDe-
scriptor> resource can be a child of <AE>, <container>, <contentInstance>,
<group>, <node>, <flexContainer>, <timeSeries>, <mgmtObj> resources.

The semantic annotations in a <semanticDescription> can apply to the parent
resource or other resources. There are two types of semantic searches that can be
performed; 1) semantic discovery and 2) semantic query. A semantic discovery
will find matching <semanticDescriptor> resources and provide the URI of the
parent resource of the <semanticDescriptor> resources that match the query. A
semantic query request will return the response to the SPARQL query in the
format defined in the query. These differences may impact the decision regarding
what parent resource to target for a <semanticDescriptor> resource.

The representation of a <semanticDescriptor> resource must be in one of the
supported semantic formats supported in oneM2M. The supported formats from
TS-0004 are:

Figure 12: Figure 12: <semanticDescriptor> Resource

In this use case we use RDF/XML in the primitives as that is supported by the

31

test implementation. The semantic annotations shown in clause 7 are written
in RDF/Turtle. A convenient utility to convert the RDF/Turtle is available at
https://www.easyrdf.org/converter or the python rdflib library.

Another requirement for the <semanticDescriptor> resource is that the descriptor
attribute is set to the value of the semantic triples encoded as xs:base64Binary.

And finally, when issuing a Semantic request, whether it is a discovery or query,
the semanticFilter parameter of the request requires “percent-encoding” when
using the HTTP protocol binding, as used in this guide.

Since the <semanticDescriptor> resource is separate from the resources that it
describes there is considerable flexibility available to application developers. For
example, if a product such as an IPE for a clothes washing machine does not
provide <semanticDescriptor> resources, it is possible for another application
to provide the <semanticDescriptor> resources. This can support application
development that continually expands its supported devices. In this clothes
washing machine use case the client application can deploy with any of the three
models described above, but as the application developer becomes aware of other
clothes washing machines, they can create the <semanticDescriptor> resources
for those devices and then applications that have been developed to use the
original deployed devices will be interoperable with these new devices, without
change to the application. This concept is one of the ways that oneM2M breaks
down the silos of vertical deployments.

9.2.4 Create <semanticDescriptor>
The <semanticDescriptor> resource can be created by the entity that is creating
the model or by a separate client entity, depending on the <accessControlPoli-
cies> of the parent resource. This example shows the create <semanticDescrip-
tor> for the Custom Model. The RDF triples that we used to semantically
describe the washing machine were first converted to RDF/XML and then
base64 encoded. The result of that encoding is used for the “dsp” attribute of
the <semanticDescriptor>.

The following code is written using python and use the utilities available here
[reference to ACME tutorial].

prefixes_io = '''@prefix saref: <https://saref.etsi.org/core/> .
@prefix s4bldg: <https://saref.etsi.org/saref4bldg/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix sn: <http://www.XYZ.com/WashingMachines#XYZ_Cool> .
@prefix m2m: <https://git.onem2m.org/MAS/BaseOntology/raw/master/base_ontology.owl#> .
'''

smdBase = '''sn:WASH_XYZ_RESOURCE_ID a <http://www.XYZ.com/WashingMachines#XYZ_Cool> ;
rdfs:comment "Very cool Washing Machine" ;

32

saref:hasFunction sn:WASH_XYZ-MonitoringFunction, sn:WASH_XYZ-StartStopFunction ;
saref:hasManufacturer "XYZ" ;
saref:hasService sn:WASH_XYZ-MonitorService , sn:WASH_XYZ-SwitchOnService ;
saref:hasState sn:WASH_XYZ-WashingMachineStatus ;
s4bldg:isContainedIn sn:My_Bathroom ;
m2m:oneM2MTargetURI "RESOURCE_ID" ;
m2m:hasOperation sn:WASH_XYZ-SwitchOnService_RESOURCE_ID, sn:WASH_XYZ-StartStopFunction-ON_Command_RESOURCE_ID, sn:WASH_XYZ-StartStopFunction-OFF_Command_RESOURCE_ID, sn:WASH_XYZ-StartStopFunction-TOGGLE_Command_RESOURCE_ID,

sn:WASH_XYZ-MonitoringFunction-WashingMachineStatus_RESOURCE_ID .
'''

smdfull = prefixes_io + smdBase
g = Graph().parse(data=smdfull, format='n3')
smdxml = g.serialize(format='xml', indent=4)

targetURI = 'myWashingMachine'
payload = smdxml.replace("RESOURCE_ID", targetURI)
smd2b64 = smdEncode(payload)

CREATE(
'http://localhost:50000/oneM2M-semantics/' + targetURI,
This is the Custom Washing Machine AE

Request Headers
{

'X-M2M-Origin': originator1, # Set the originator
'X-M2M-RI': '123', # Request identifier
'X-M2M-RVI': '3', # Release verson indicator
'Accept': 'application/json', # Response shall be JSON
'Content-Type': 'application/json;ty=24' # Content is JSON, and represents an <semanticDescriptor> resource

},

Request Body
{

'm2m:smd': {
'rn': 'smdCustomWasher',
'dcrp': 'application/rdf+xml:1', # the RDF triples use RDF/XML format;
'dsp': smd2b64 # the base64 encode triples

}
}

)

The resulting oneM2M primitive request and response using the HTTP protocol
binding and JSON payload binding is shown below.

Sending request to http://localhost:50000/oneM2M-semantics/myWashingMachine
Headers
X-M2M-Origin: Cipe1

33

X-M2M-RI: 123
X-M2M-RVI: 3
Accept: application/json
Content-Type: application/json;ty=24

Body
{

"m2m:smd": {
"rn": "smdCustomWasher",
"dcrp": "application/rdf+xml:1",
"dsp": "PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0idXRmLTgiPz4KPHJkZjpSREYKICAgeG1sbnM6bTJtPSJodHRwczovL2dpdC5vbmVtMm0ub3JnL01BUy9CYXNlT250b2xvZ3kvcmF3L21hc3Rlci9iYXNlX29udG9sb2d5Lm93bCMiCiAgIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyIKICAgeG1sbnM6cmRmcz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC8wMS9yZGYtc2NoZW1hIyIKICAgeG1sbnM6czRibGRnPSJodHRwczovL3NhcmVmLmV0c2kub3JnL3NhcmVmNGJsZGcvIgogICB4bWxuczpzYXJlZj0iaHR0cHM6Ly9zYXJlZi5ldHNpLm9yZy9jb3JlLyIKPgogIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSJodHRwOi8vd3d3LlhZWi5jb20vV2FzaGluZ01hY2hpbmVzI1hZWl9Db29sV0FTSF9YWVpfbXlXYXNoaW5nTWFjaGluZSI+CiAgICA8cmRmOnR5cGUgcmRmOnJlc291cmNlPSJodHRwOi8vd3d3LlhZWi5jb20vV2FzaGluZ01hY2hpbmVzI1hZWl9Db29sIi8+CiAgICA8cmRmczpjb21tZW50PlZlcnkgY29vbCBXYXNoaW5nIE1hY2hpbmU8L3JkZnM6Y29tbWVudD4KICAgIDxzYXJlZjpoYXNGdW5jdGlvbiByZGY6cmVzb3VyY2U9Imh0dHA6Ly93d3cuWFlaLmNvbS9XYXNoaW5nTWFjaGluZXMjWFlaX0Nvb2xXQVNIX1hZWi1Nb25pdG9yaW5nRnVuY3Rpb24iLz4KICAgIDxzYXJlZjpoYXNGdW5jdGlvbiByZGY6cmVzb3VyY2U9Imh0dHA6Ly93d3cuWFlaLmNvbS9XYXNoaW5nTWFjaGluZXMjWFlaX0Nvb2xXQVNIX1hZWi1TdGFydFN0b3BGdW5jdGlvbiIvPgogICAgPHNhcmVmOmhhc01hbnVmYWN0dXJlcj5YWVo8L3NhcmVmOmhhc01hbnVmYWN0dXJlcj4KICAgIDxzYXJlZjpoYXNTZXJ2aWNlIHJkZjpyZXNvdXJjZT0iaHR0cDovL3d3dy5YWVouY29tL1dhc2hpbmdNYWNoaW5lcyNYWVpfQ29vbFdBU0hfWFlaLU1vbml0b3JTZXJ2aWNlIi8+CiAgICA8c2FyZWY6aGFzU2VydmljZSByZGY6cmVzb3VyY2U9Imh0dHA6Ly93d3cuWFlaLmNvbS9XYXNoaW5nTWFjaGluZXMjWFlaX0Nvb2xXQVNIX1hZWi1Td2l0Y2hPblNlcnZpY2UiLz4KICAgIDxzYXJlZjpoYXNTdGF0ZSByZGY6cmVzb3VyY2U9Imh0dHA6Ly93d3cuWFlaLmNvbS9XYXNoaW5nTWFjaGluZXMjWFlaX0Nvb2xXQVNIX1hZWi1XYXNoaW5nTWFjaGluZVN0YXR1cyIvPgogICAgPHM0YmxkZzppc0NvbnRhaW5lZEluIHJkZjpyZXNvdXJjZT0iaHR0cDovL3d3dy5YWVouY29tL1dhc2hpbmdNYWNoaW5lcyNYWVpfQ29vbE15X0JhdGhyb29tIi8+CiAgICA8bTJtOm9uZU0yTVRhcmdldFVSST5teVdhc2hpbmdNYWNoaW5lPC9tMm06b25lTTJNVGFyZ2V0VVJJPgogICAgPG0ybTpoYXNPcGVyYXRpb24gcmRmOnJlc291cmNlPSJodHRwOi8vd3d3LlhZWi5jb20vV2FzaGluZ01hY2hpbmVzI1hZWl9Db29sV0FTSF9YWVotU3dpdGNoT25TZXJ2aWNlX215V2FzaGluZ01hY2hpbmUiLz4KICAgIDxtMm06aGFzT3BlcmF0aW9uIHJkZjpyZXNvdXJjZT0iaHR0cDovL3d3dy5YWVouY29tL1dhc2hpbmdNYWNoaW5lcyNYWVpfQ29vbFdBU0hfWFlaLVN0YXJ0U3RvcEZ1bmN0aW9uLU9OX0NvbW1hbmRfbXlXYXNoaW5nTWFjaGluZSIvPgogICAgPG0ybTpoYXNPcGVyYXRpb24gcmRmOnJlc291cmNlPSJodHRwOi8vd3d3LlhZWi5jb20vV2FzaGluZ01hY2hpbmVzI1hZWl9Db29sV0FTSF9YWVotU3RhcnRTdG9wRnVuY3Rpb24tT0ZGX0NvbW1hbmRfbXlXYXNoaW5nTWFjaGluZSIvPgogICAgPG0ybTpoYXNPcGVyYXRpb24gcmRmOnJlc291cmNlPSJodHRwOi8vd3d3LlhZWi5jb20vV2FzaGluZ01hY2hpbmVzI1hZWl9Db29sV0FTSF9YWVotU3RhcnRTdG9wRnVuY3Rpb24tVE9HR0xFX0NvbW1hbmRfbXlXYXNoaW5nTWFjaGluZSIvPgogICAgPG0ybTpoYXNPcGVyYXRpb24gcmRmOnJlc291cmNlPSJodHRwOi8vd3d3LlhZWi5jb20vV2FzaGluZ01hY2hpbmVzI1hZWl9Db29sV0FTSF9YWVotTW9uaXRvcmluZ0Z1bmN0aW9uLVdhc2hpbmdNYWNoaW5lU3RhdHVzX215V2FzaGluZ01hY2hpbmUiLz4KICA8L3JkZjpEZXNjcmlwdGlvbj4KPC9yZGY6UkRGPgo="

}
}

Response
MISSING TEXT

Body
{

"m2m:smd": {
"ct": "20220714T112657",
"et": "99991231T235959",
"lt": "20220714T112657",
"pi": "Cipe1",
"ri": "smd165779801715710114cse01"

}
}

The code above is repeated for each <semanticDescriptor> resource that is
created. For this use case, there are six <semanticdescriptor> resources created.
Three <semanticDescriptor> resources that describe the capabilities of the
washing machine are identical except for the “RESOURCE_ID” token that is
replaced with the appropriate value. The other three <semanticDescriptor>
resources describe the API of the model and therefore have different values for
the oneM2M baseOntology classes.

9.2.5 Semantic Query
When a SPARQL query is created, it can be passed in the “semanticFilter”
request parameter, shown below with the shortname form of the request pa-
rameter of “smf”. The query must first be ascii encoded. Using python, the
following code will execute query 4 from above to dynamically determine all four
primitives needed to use the SDT model of the washing machine. Additionally,
the “Semantic Query Indicator”, “sqi”, is set to “1” to distinguish this query
request from a semantic discovery request. A semantic discovery request will

34

return a list of URIs that match the query rather than a query response.

query = '''PREFIX sn:<http://www.XYZ.com/WashingMachines#>
PREFIX m2m: <https://git.onem2m.org/MAS/BaseOntology/raw/master/base_ontology.owl#>
PREFIX saref: <https://saref.etsi.org/core/>

SELECT ?sarefCommand ?method ?targetURI ?attr ?res
WHERE {

?wm m2m:hasOperation ?operation .
?operation a m2m:Operation .
?operation m2m:oneM2MMethod ?method .
optional {?operation m2m:hasDataRestriction ?res} .
optional {?operation m2m:oneM2Mattribute ?attr} .
?operation a ?sarefCommand .
?operation m2m:oneM2MTargetURI ?targetURI .
VALUES ?wm {<http://www.XYZ.com/WashingMachines#XYZ_CoolWASH_XYZ_deviceClothesWasher>} .
VALUES ?sarefCommand {saref:GetCommand saref:OnCommand saref:OffCommand saref:ToggleCommand}

}
ORDER BY ?sarefCommand
'''

encSMQ = encodedSparqlQuery(query)

RETRIEVE (
'http://localhost:50000/oneM2M-semantics?fu=1&sqi=1&smf='+ encSMQ,

Request Headers
{

'X-M2M-Origin' : originator2, # Set the originator
'X-M2M-RI' : 'semQ1', # Unique request identifier
'X-M2M-RVI' : '3', # Release verson indicator
'Accept' : 'application/json' # Response shall be JSON

}
)

The resulting oneM2M primitive request and response using the HTTP protocol
binding and JSON payload binding is shown below. It is important to note the
JSON response to the query. An application will have to parse the response
from the query to get the desired information.

Sending request to
http://localhost:50000/oneM2M-semantics?fu=1&sqi=1&smf=PREFIX sn%3A<http%3A%2F%2Fwww.XYZ.com%2FWashingMachines%23> PREFIX m2m%3A <https%3A%2F%2Fgit.onem2m.org%2FMAS%2FBaseOntology%2Fraw%2Fmaster%2Fbase_ontology.owl%23> PREFIX saref%3A <https%3A%2F%2Fsaref.etsi.org%2Fcore%2F> SELECT %3FsarefCommand %3Fmethod %3FtargetURI %3Fattr %3Fres WHERE { %3Fwm m2m%3AhasOperation %3Foperation . %3Foperation a m2m%3AOperation . %3Foperation m2m%3AoneM2MMethod %3Fmethod . optional {%3Foperation m2m%3AhasDataRestriction %3Fres} . optional {%3Foperation m2m%3AoneM2Mattribute %3Fattr} . %3Foperation a %3FsarefCommand . %3Foperation m2m%3AoneM2MTargetURI %3FtargetURI . VALUES %3Fwm {<http%3A%2F%2Fwww.XYZ.com%2FWashingMachines%23XYZ_CoolWASH_XYZ_deviceClothesWasher>} . VALUES %3FsarefCommand {saref%3AGetCommand saref%3AOnCommand saref%3AOffCommand saref%3AToggleCommand} } ORDER BY %3FsarefCommand

CHECK WHITESPACE

Headers missing text
Response missing text

35

Body
[

{
"attr": {

"type": "literal",
"value": "currentMachineState"

},
"method": {

"type": "literal",
"value": "RETRIEVE"

},
"sarefCommand": {

"type": "uri",
"value": "https://saref.etsi.org/core/GetCommand"

},
"targetURI": {

"type": "literal",
"value": "/deviceClothesWasher/runState"

}
},
{

"attr": {
"type": "literal",
"value": "powerState"

},
"method": {

"type": "literal",
"value": "UPDATE"

},
"res": {

"type": "literal",
"value": "False"

},
"sarefCommand": {

"type": "uri",
"value": ""

},
"targetURI": {

"type": "literal",
"value": "/deviceClothesWasher/binarySwitch"

}
},
{

"attr": {
"type": "literal",
"value": "powerState"

36

},
"method": {

"type": "literal",
"value": "UPDATE"

},
"res": {

"type": "literal",
"value": "True"

},
"sarefCommand": {

"type": "uri",
"value": ""

},
"targetURI": {

"type": "literal",
"value": "/deviceClothesWasher/binarySwitch"

}
},
{

"method": {
"type": "literal",
"value": "UPDATE"

},
"sarefCommand": {

"type": "uri",
"value": ""

},
"targetURI": {

"type": "literal",
"value": "/deviceClothesWasher/binarySwitch/toggle"

}
}

]

code here

10 History

Version Date Publication history

37

Version Date Publication history
V0.0.0 2022-03-09 SKELETON
V5.0.1 2024-03-28 Input Contributions: TDE-2024-0007

38

	Contents
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions
	4 Conventions
	5 Motivation
	6 System Description
	6.1 Use case
	6.2 Device models using a Custom Model
	6.3 Device models using Semantic Modelling
	6.4 Device models using Smart Device Template

	7 Semantic Annotation in oneM2M
	7.1 Semantic description of services using SAREF Ontology
	7.2 Describing oneM2M APIs with the oneM2M Base Ontology
	7.2.1 Clothes Washing Machine APIs using oneM2M
	7.2.2 Custom Model API semantic description
	7.2.3 Semantic Model annotation
	7.2.4 SDT model annotation

	8 Semantic Queries
	8.1 Discovery Queries
	8.2 Interoperability Queries

	9 Procedures
	9.1 Introduction
	9.2 Implementation
	9.2.1 Semantics Description Utilities
	9.2.2 Semantic Query Utilities
	9.2.3 Semantics representations and primitives
	9.2.4 Create <semanticDescriptor>
	9.2.5 Semantic Query

	10 History

