
oneM2M
Technical Specification

oneM2M
Technical Specification

Document Number TS-0006-V4.0.1
Document Name: Management enablement (BBF)
Date: 2024-11-10
Abstract: Specifies the usage of the BBF TR-069

protocol and the corresponding
message flows including normal cases
as well as error cases to fulfil the
oneM2M management requirements.
Protocol mapping between the
oneM2M service layer and BBF
TR-069 protocol. The Mca reference
point, ms interface and la interface are
possibly involved in this protocol
mapping.
Mapping between the oneM2M
management related resources and the
TR-069 protocol RPCs and TR-181i2
data model.
Specification of new TR-181 data
model elements to fulfil oneM2M
specific management requirements
that cannot be currently translated.

1

oneM2M
Technical Specification

oneM2M
Technical Specification

Template Version: January 2017 (Do
not modify)

Template Version: January 2017 (Do
not modify)

The present document is provided for future development work within oneM2M
only. The Partners accept no liability for any use of this specification.

The present document has not been subject to any approval process by the
oneM2M Partners Type 1. Published oneM2M specifications and reports for
implementation should be obtained via the oneM2M Partners’ Publications
Offices.

About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which
address the need for a common M2M Service Layer that can be readily embedded
within various hardware and software, and relied upon to connect the myriad of
devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

(c) 2019, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI,
TTA, TTC).

All rights reserved.

The copyright extends to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals
who have the appropriate degree of experience to understand and interpret its
contents in accordance with generally accepted engineering or other professional
standards and applicable regulations. No recommendation as to products or
vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMA-
TION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS
TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND
FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR
AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO
oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT
OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS
DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT
SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES

2

ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PRO-
VIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents
1 Scope
2 References

2.1 Normative references
2.2 Informative references

3 Definitions of terms and abbreviations
3.1 Terms
3.2 Abbreviations

4 Conventions
5 Mapping of basic data types
6 Mapping of identifiers

6.0 Introduction
6.1 Mapping of Device identifiers to the Node Resource
6.2 Identifier of an object instance

7 Mapping of resources
7.0 Introduction
7.1 General mapping assumptions

7.1.0 Introduction
7.1.1 Mapping of Device Identifiers
7.1.2 Mapping of Embedded Devices

7.2 Resource [deviceInfo]
7.3 Resource [memory]
7.4 Resource [battery]
7.5 Resource [areaNwkInfo]
7.6 Resource [areaNwkDeviceInfo]
7.7 Resource [eventLog]
7.8 Resource [deviceCapability]
7.9 Resource [firmware]
7.10 Resource [software]
7.11 Resource [reboot]
7.12 Resource [cmdhPolicy]

7.12.0 Introduction
7.12.1 Resource [activeCmdhPolicy]
7.12.2 Resource [cmdhDefaults]
7.12.3 Resource [cmdhDefEcValue]
7.12.4 Resource [cmdhEcDefParamValues]
7.12.5 Resource [cmdhLimits]
7.12.6 Resource [cmdhNetworkAccessRules]
7.12.7 Resource [cmdhNwAccessRule]
7.12.8 Resource [cmdhBuffer]

7.13 Resource Type <mgmtCmd>

3

7.14 Resource Type <execInstance>
7.15 Resource [registration]
7.16 Resource [dataCollection]
7.17 Security Solutions

7.17.1 Introduction
7.17.2 Resource [authenticationProfile]
7.17.3 Resource [trustAnchorCred]
7.17.4 Resource [myCertFileCred]
7.17.5 Resource [MAFClientRegCfg]
7.17.6 Resource [MEFClientRegCfg]

8 Mapping of procedures for management
8.0 Introduction
8.1 Resource Type <mgmtObj> primitive mappings

8.1.0 Introduction
8.1.1 Alias-Based Addressing Mechanism
8.1.2 Create primitive mapping

8.1.2.0 Introduction
8.1.2.1 M2M Service Layer Resource Instance Identifier mapping

8.1.3 Delete primitive mapping
8.1.3.1 Delete primitive mapping for deletion of Object Instances
8.1.3.2 Delete primitive mapping for software un-install operation

8.1.4 Update primitive mapping
8.1.4.1 Update primitive mapping for Parameter modifications
8.1.4.2 Update primitive mapping for upload file transfer operations
8.1.4.3 Update primitive mapping for download file transfer operations
8.1.4.4 Update primitive mapping for reboot operation
8.1.4.5 Update primitive mapping for factory reset operation
8.1.4.6 Update primitive mapping for software install operation

8.1.5 Retrieve primitive mapping
8.1.6 Notify primitive mapping

8.1.6.0 Introduction
8.1.6.1 Procedure for subscribed Resource attributes.
8.1.6.2 Notification primitive mapping

8.2 <mgmtCmd> and <execInstance> resource primitive mappings
8.2.1 Update (Execute) primitive for the <mgmtCmd> resource

8.2.1.0 Introduction
8.2.1.1 Execute File Download
8.2.1.2 Execute File Upload Operations
8.2.1.3 Report Results using TransferComplete RPC
8.2.1.4 Execute Software Operations with ChangeDUState RPC
8.2.1.5 Report Results with ChangeDUStateComplete RPC
8.2.1.6 Execute Reboot operation
8.2.1.7 Execute Factory Reset operation

8.2.2 Delete <mgmtCmd> resource primitive mapping
8.2.3 Update (Cancel) <execInstance> primitive mapping
8.2.4 Delete <execInstance> primitive mapping

4

8.3 Resource [myCertFileCred] primitive mappings
8.3.1 Introduction
8.3.2 Creation of Resource [myCertFileCred]

8.3.2.1 Introduction
8.3.2.2 Procedure for creation of Resource [myCertFileCred]

9 Server Interactions
9.0 Introduction
9.1 Communication Session Establishment

9.1.1 IN-CSE to ACS Communication Session Establishment
9.1.2 ACS to IN-CSE Communication Session Establishment
9.1.3 ACS and IN-CSE Communication Session Requirements

9.2 Processing of Requests and Responses
9.2.1 Request and Notification Formatting
9.2.2 ACS Request Processing Requirements
9.2.3 ACS Notification Processing Requirements

9.3 Discovery and Synchronization of Resources
9.4 Access Management

9.4.0 Introduction
9.4.1 Access Management Requirements

10 New Management Technology Specific Resources
History

1 Scope
The present document describes the protocol mappings between the management
Resources for oneM2M and the BBF TR-181 Data Model [6].

2 References
2.1 Normative references
References are either specific (identified by date of publication and/or edition
number or version number) or nonspecific. For specific references, only the cited
version applies. For non-specific references, the latest version of the referenced
document (including any amendments) applies.

The following referenced documents are necessary for the application of the
present document.

• [1] oneM2M TS-0001: “Functional Architecture”.
• [2] oneM2M TS-0004: “Service Layer Core Protocol Specification”.
• [3] oneM2M TS-0011: “Common Terminology”.
• [4] BBF: “TR-069 CPE WAN Management Protocol”, Issue: 1 Amendment

5, November 2013.
• [5] BBF: “TR-106 Data Model Template for TR-069-Enabled Devices”,

Issue 1, Amendment 7, September 2013.

5

• [6] BBF: “TR-181 Device Data Model for TR-069, Issue 2 Amendment
11”, July 2016.

• [7] BBF: “TR-131 ACS Northbound Interface Requirements, Issue:1”,
November 2009.

• [8] oneM2M TS-0022: “Field Device Configuration”.

2.2 Informative references
References are either specific (identified by date of publication and/or edition
number or version number) or nonspecific. For specific references, only the cited
version applies. For non-specific references, the latest version of the referenced
document (including any amendments) applies.

The following referenced documents are not necessary for the application of the
present document but they assist the user with regard to a particular subject
area.

• [i.1] oneM2M Drafting Rules. > NOTE: Available at http://www.onem2m
.org/images/files/oneM2M-Drafting-Rules.pdf.

3 Definitions of terms and abbreviations
3.1 Terms
For the purposes of the present document, the terms given in TS-0011 [3] and
the following apply:

CPE Proxier: CPE that is capable of proxying the communication between an
ACS and a Proxied Device as defined in TR-069 [4]

3.2 Abbreviations
For the purposes of the present document, the abbreviations given in TS-0011
[3] and the following apply:

ACS Auto-Configuration Server
ADN Application Dedicated Node
AE Application Entity
ASN Application Service Node
BBF BroadBand Forum
CMDH Communication Management and Delivery Handling
CPE Customer Premise Equipment
CSE Common Services Entity
CWMP CPE WAN Management Protocol
DM Device Management
DU Deployment Unit
IN-CSE CSE which resides in the Infrastructure Node
LAN Local Area Network

6

http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf
http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf

MAF M2M Authentication Function
MN Middle Node
OUI Organizationally Unique Identifier
PC Product Class
RPC Remote Procedure Call
SN Serial Number
UPA Universal Powerline Association
URI Uniform Resource Identifier
URL Uniform Resource Locator
USB Universal Serial Bus
UUID Universal Unique IDentifier
XML Extensible Markup Language

4 Conventions
The key words “Shall”, “Shall not”, “May”, “Need not”, “Should”, “Should
not” in the present document are to be interpreted as described in the oneM2M
Drafting Rules [i.1].

5 Mapping of basic data types
TR-106 [5] specifies the object structure supported by TR-069 enabled devices
and specifies the structural requirements for the data hierarchy. This clause
includes the mapping attribute data types to TR-181 [6] parameters which
follows the conventions of section 3 of TR-106 [5] and data types described in
Table 4 of TR-106 [5].

Table 2: Table 5-1: Data Type Mapping

oneM2M Data Types
Mapping to data types
in TR-106 Conversion Notes

xs:boolean boolean
xs:string string Mapping is constrained

to the size of the string
xs:unsignedInt unsignedInt
xs:unsignedLong unsignedLong
xs:integer long Mapping is constrained

to the size of the long
data type.

Xs:positiveInteger unsignedLong Mapping is constrained
to a lower limit of 1 and
the size of the
unsignedLong data type.

7

oneM2M Data Types
Mapping to data types
in TR-106 Conversion Notes

Xs:nonNegativeInteger unsignedLong Mapping is constrained
the size of the
unsignedLong data type.

Comma separated Lists Comma separated Lists Data structure is
represented by comma
separated list as
described in section
3.2.3 of TR-106 [5].

In some instances the conversion of the contents between data types will cause an
error to occur (e.g. xs:integer to long). When an error occurs in the conversion
of a data type, the 4000 (BAD_REQUEST) response status code shall be given.

6 Mapping of identifiers
6.0 Introduction
The TR-069 [4] specification defines three (3) types of devices, known as CPEs,
that are capable of being managed from the perspective of the TR-069 agent:

• CPE that hosts the TR-069 agent: Section A.3.3.1 Inform of TR-069 [4]
defines the required fields for a CPE to be identified. These fields include
the OUI and Serial Number of the CPE assigned by the CPE manufacturer.
Optionally the manufacturer may assign a Product Class to the CPE. The
format of the identifier is as follows: OUI-[PC-]SN.

• Virtual Device: This type of device is addressed as a CPE. The Virtual
Device has its own OUI-[PC-]SN as represented by the CPE Proxier. The
CPE Proxier emulates a CWMP agent for each Virtual Device.

• Embedded Device: This type of device is addressed as one or more objects
within the data model of the CPE that hosts the TR-069 agent.

6.1 Mapping of Device identifiers to the Node Resource
Node Resources are identified for each instance of an ADN, ASN and MN node
and are identified using the M2M Node Identifier (M2M-Node-ID) defined in
the oneM2M Functional [1].

CPE Device identifiers shall map to the nodeID attribute of the <node> resource.
The CPE Device identifiers are obtained from the contents of the following
attributes:

• Device.DeviceInfo.ManufacturerOUI
• Device.DeviceInfo.ProductClass
• Device.DeviceInfo.SerialNumber

8

Virtual Device identifiers shall map to the nodeID attribute of the <node>
resource. The Virtual Device identifiers are obtained from the CPE Proxier
using the contents of the attributes:

• Device.ManagementServer.VirtualDevice.{i}.ManufacturerOUI
• Device.ManagementServer.VirtualDevice.{i}.ProductClass
• Device.ManagementServer.VirtualDevice.{i}.SerialNumber

Embedded Device identifiers shall map to the nodeID attribute of the <node>
resource. The Embedded Device identifiers are obtained using the containing
CPE Device or Virtual Device identifiers along with the contents of the attributes
of the:

• Device.ManagementServer.EmbeddedDevice.{i}.ControllerID
• Device.ManagementServer.EmbeddedDevice.{i}.ProxiedDeviceID

6.2 Identifier of an object instance
The TR-069 [4] specification permits objects to have multiple object instances
where each object instance is contained within the objectPath attribute of the
Resource within the context of the Resource’s objectId as defined in clause 7.1.

In order to allow the AE or CSE that originated the request that manipulates a
Resource to easily align the M2M Service Layer with the Resource’s external
technology identifier, the value of the object instance “{i}” should be a part
of the identifier of the Resource in the M2M Service Layer where possible.
For example if the [areaNetwork] resource has an object instance identifier of
“Device.X_oneM2M_org_CSE.1.M2MareaNetworkDevice.[foo]” then the M2M
Service Layer Resource should be identified using the object instance of the
underlying technology (e.g. “/foo” for the Resource areaNetwork).

7 Mapping of resources
7.0 Introduction
This clause contains all information on how to map management resources from
TS-0004 [2] to managed objects and parameters as defined in the TR-181 [6]
data model or the Remote Procedure Calls (RPCs) in TR-069 [4].

7.1 General mapping assumptions
7.1.0 Introduction

TR-069 [4] specifies a protocol for communication between a CPE (Customer
Premises Equipment) and an ACS (Auto-Configuration Server). Any TR-069
enabled device has to follow the data model as described in the TR-106 [5] and
TR181 [6] as well as RPCs described in TR-069 [4].

9

As TR-181 [6] is the model that the Resources are mapped, all Resources shall
have the objects of the TR-181 [6] namespace (e.g. “urn:broadband-forum-org:tr-
181-2-7-0”).

7.1.1 Mapping of Device Identifiers

The Device identifiers for CPEs are mapped to the Resource Types [deviceInfo].

For CPE and Virtual Devices map their Device Identifiers (OUI-[PC-]SN) to the
manufacturer, deviceType and deviceLabel attributes of the Resource [device-
Info].

For Embedded Devices, the ControllerID and ProxiedDeviceID parameters of
the Device.ManagementServer.EmbeddedDevice.{i} object instance are mapped
to the deviceLabel attribute of the Resource [deviceInfo] as a comma sepa-
rated list: “Device.ManagementServer.EmbeddedDevice.{i}.ControllerID, De-
vice.ManagementServer.EmbeddedDevice.{i}.ProxiedDeviceID”.

7.1.2 Mapping of Embedded Devices

The TR-181 [6] specification does not provide a mechanism where Embedded
Devices provide information related to the Device.DeviceInfo objects and sub-
objects. Instead the TR-181 [6] provides this information in a manner that is
reliant on the Embedded Device’s underlying technology (e.g. ZigBee(R), UpnP).

As such the mapping of the [memory] and [battery] Resources are implementation
specific for each underlying technology and is outside the scope of the present
document.

7.2 Resource [deviceInfo]
The Resource [deviceInfo] is a read-only Resource that shall map to the De-
vice.DeviceInfo object of TR-181 [6] for CPE and Virtual Devices.

The information shall be retrieved using the GetParameterValues RPC of TR-069
[4].

NOTE: The SerialNumber, ModelNumber, ProductClass at-
tributes for a Virtual device are the same values as the De-
vice.ManagementServer.VirtualDevice.{i} object in the CPE
Proxier.

Table 3: Table 7.2-1: Resource [deviceInfo] for CPE and Virtual
Devices

Attribute Name of [deviceInfo] BBF TR-181 [6] Parameter
deviceLabel Device.DeviceInfo.SerialNumber
manufacturer Device.DeviceInfo.Manufacturer
model Device.DeviceInfo.ModelNumber

10

Attribute Name of [deviceInfo] BBF TR-181 [6] Parameter
deviceType Device.DeviceInfo.ProductClass
fwVersion Device.DeviceInfo.SoftwareVersion if

the device supports only 1 software
version. If the device support multiple
software versions this shall map to De-
vice.DeviceInfo.AdditionalSoftwareVersion

swVersion Device.DeviceInfo.SoftwareVersion
hwVersion Device.DeviceInfo.HardwareVersion

Table 4: Table 7.2-2: Resource [deviceInfo] for Embedded Devices

Attribute Name of [deviceInfo] BBF TR-181 [6] Parameter
deviceLabel Comma separated list: “De-

vice.ManagementServer.EmbeddedDevice.{i}.ControllerID,
De-
vice.ManagementServer.EmbeddedDevice.{i}.ProxiedDeviceID

manufacturer No mapping available
model No mapping available
deviceType No mapping available
fwVersion No mapping available
swVersion No mapping available
hwVersion No mapping available

7.3 Resource [memory]
The Resource [memory] is a read-only Resource that shall map to the De-
vice.DeviceInfo.MemoryStatus object of TR181 [6] for CPE and Virtual Devices.

The information shall be retrieved using the GetParameterValues RPC of TR-069
[4].

Attempts to modify the attributes of the memory Resource causes an error code
“operation unsupported” to be returned.

Table 5: Table 7.3-1: Resource [memory]

Attribute Name of [memory] BBF TR-181 [6] Parameter
memAvailable Device.DeviceInfo.MemoryStatus.Free
memTotal Device.DeviceInfo.MemoryStatus.Total

11

7.4 Resource [battery]
The Resource [battery] is a read-only Resource that shall map to an instance of
Device.DeviceInfo.X_oneM2M_org_BatteryStatus.Battery.{i} object for CPE
and Virtual Devices.

The information shall be retrieved using the GetParameterValues RPC of TR-069
[4].

Table 6: Table 7.4-1: Resource [battery]

Attribute Name of [battery] BBF TR-181 [6] Parameter
batteryLevel Device.DeviceInfo.X_oneM2M_org_BatteryStatus.Battery.{i}.Level
batteryStatus Device.DeviceInfo.X_oneM2M_org_BatteryStatus.Battery.{i}.Status

7.5 Resource [areaNwkInfo]
The Resource [areaNwkInfo] is a multi-instance Resource where each instance of
the Resource shall map to an instance of Device.X_oneM2M_org_CSE.{i}.M2MareaNetwork.{i}
object.

As the Resource [areaNwkInfo] is a multi-instance Resource, the M2MareaNetwork
object is a multi-object instance that can be created and deleted.

The M2MareaNetwork instance shall be created using the Add Object RPC of
TR-069 [4].

The M2MareaNetwork instance shall be deleted using the Delete Object RPC of
TR-069 [4].

The information of an M2MareaNetwork shall be retrieved using the GetParam-
eterValues RPC of TR-069 [4].

The information of an M2MareaNetwork shall be modified using the SetParame-
terValues RPC of TR-069 [4].

Table 7: Table 7.5-1: Resource [areaNwkInfo]

Attribute Name of [areaNwkInfo] X_oneM2M_org Parameter
areaNwkType Device.X_oneM2M_org_CSE.{i}.M2MareaNetwork.{i}.Type
listOfDevices Device.X_oneM2M_org_CSE.{i}.M2MareaNetwork.{i}.ListOfDevices

7.6 Resource [areaNwkDeviceInfo]
The Resource [areaNwkDeviceInfo] is a multi-instance Resource where each in-
stance of the Resource shall map to an instance of Device.X_oneM2M_org_CSE.{i}.AreaNetworkDevice.{i}
object.

12

As the Resource [areaNwkDeviceInfo] is a multi-instance Resource, the AreaNet-
workDevice object is a multi-object instance that can be created and deleted.

Instances of the Resource [areaNwkDeviceInfo] are referenced in the listOfDevices
attribute of the associated Resource [areaNwkInfo].

The M2MareaNetworkDevice instance shall be created using the Add Object
RPC of TR-069 [4].

The M2MareaNetworkDevice instance shall be deleted using the Delete Object
RPC of TR-069 [4].

The information of an M2MareaNetworkDevice shall be retrieved using the
GetParameterValues RPC of TR-069 [4].

The information of an M2MareaNetworkDevice shall be modified using the
SetParameterValues RPC of TR-069 [4].

Table 8: Table 7.6-1: Resource [areaNwkDeviceInfo]

Attribute Name of
[areaNwkDeviceInfo] X_oneM2M_org Parameter
devId Device.X_oneM2M_org_CSE.{i}.M2MareaNetworkDevice.{i}.Host
devType Device.X_oneM2M_org_CSE.{i}.M2MareaNetworkDevice.{i}.Type
areaNwkId Reference to De-

vice.X_oneM2M_org_CSE.{i}.M2MareaNetworkDevice.{i}.M2MareaNetwork
sleepInterval Device.X_oneM2M_org_CSE.{i}.M2MareaNetworkDevice.{i}.SleepInterval
sleepDuration Device.X_oneM2M_org_CSE.{i}.M2MareaNetworkDevice.{i}.SleepDuration
status Device.X_oneM2M_org_CSE.{i}.M2MareaNetworkDevice.{i}.Status
listOfNeighbors Device.X_oneM2M_org_CSE.{i}.M2MareaNetworkDevice.{i}.Neighbors

7.7 Resource [eventLog]
The Resource [eventLog] is a multi-instance Resource where each instance of the
Resource shall map to an instance of Device.DeviceInfo.X_oneM2M_org_Diagnostics.EventLog.{i}
object.

The EventLog instance shall be created using the Add Object RPC of TR-069
[4].

The EventLog instance shall be deleted using the Delete Object RPC of TR-069
[4].

The information of an EventLog instance shall be retrieved using the GetParam-
eterValues RPC of TR-069 [4].

The information of an EventLog instance shall be updated using the SetParame-
terValues RPC of TR-069 [4].

13

Table 9: Table 7.7-1: Resource [eventLog]

Attribute Name of [eventLog] BBF TR-181 [6] Parameter
logTypeId Device.DeviceInfo.X_oneM2M_org_Diagnostics.EventLog.{i}.Type
logData Device.DeviceInfo.X_oneM2M_org_Diagnostics.EventLog.{i}.Data
logStatus Device.DeviceInfo.X_oneM2M_org_Diagnostics.EventLog.{i}.Status
logStart Set to “True”, the De-

vice.DeviceInfo.X_oneM2M_org_Diagnostics.EventLog.{i}.Enable
parameter is set to “True”.

logStop Set to “True”, the De-
vice.DeviceInfo.X_oneM2M_org_Diagnostics.EventLog.{i}.Enable
parameter is set to “False”.

7.8 Resource [deviceCapability]
The Resource [deviceCapability] represents a capability of device that can be
administratively enabled or disabled. The lists of capabilities that are managed
are defined in the enumeration of the capabilityName attribute. TR-181 [6] data
model defines a subset of capabilities listed in the deviceCapability enumeration.
The supported device capabilities within TR-181 [6] include:

• LAN Interfaces: USB, Wi-Fi, HomePlug, MoCA, UPA
• Hardware Capabilities: SmartCardReader

The information shall be retrieved using the GetParameterValues RPC of TR-069
[4].

The capabilities shall be enabled and disabled using the SetParameterValues
RPC of TR-069 [4].

Table 10: Table 7.8-1: Resource [deviceCapability]

Attribute Name of [deviceCapability] BBF TR-181 [6] Parameter
capabilityName This attribute is fixed based on the

value of the capabilityName attribute.
Attached Returns “True”

14

Attribute Name of [deviceCapability] BBF TR-181 [6] Parameter
capabilityActionStatus Status is defined as:

Success if the SetParameterValues
RPC indicates that the operation was
successful.
Failure if the response to the
SetParameterValues RPCs indicates
that the operation failed.
In process if the SetParameterValues
RPC is initiated but the response to
the SetParameterValues RPC has not
been received.

currentState USB: Device.USB.Interface.{i}.Enable
Wi-Fi: Device.Wi-Fi.Radio.{i}.Enable
HomePlug: De-
vice.HomePlug.Interface.{i}.Enable
MoCA:
Device.MoCA.Interface.{i}.Enable
UPA: Device.UPA.Interface.{i}.Enable
SmartCardReader:
Device.SmartCardReaders.SmartCardReader.{i}.Enable

enable USB: Device.USB.Interface.{i}.Enable
Wi-Fi: Device.Wi-Fi.Radio.{i}.Enable
HomePlug: De-
vice.HomePlug.Interface.{i}.Enable
MoCA:
Device.MoCA.Interface.{i}.Enable
UPA: Device.UPA.Interface.{i}.Enable
SmartCardReader:
Device.SmartCardReaders.SmartCardReader.{i}.Enable

disable Same parameter is used to disable a
capability as the enable attribute.

7.9 Resource [firmware]
The Resource [firmware] represents a firmware instance and is not considered a
TR-069 managed entity within the device until the firmware Resource’s update
attribute has been written a value of “True”. When this occurs, the TR069
Download RPC shall be invoked.

NOTE: In many instances, the server from which the firmware is
downloaded requires authentication in the form of Username and
Password credentials. The CSE that executes firmware download
shall maintain the mapping of the username and password of the
download server needed to download the firmware outside the lifecycle

15

of the specific firmware.

Table 11: Table 7.9-1: Resource [firmware]

Attribute Name of [firmware] RPC Download Arguments
URL URL
update When set to the value of “True”

executes the Download operations
with a FileType “1 Firmware Upgrade
Image” is performed.
Username: Received from the CSE for
the download server where the update
is set to “True”.
Password: Received from the CSE for
the download server where the update
is set to “True”.
CommandKey: Automatically set by
the CSE where the update is set to
“True” in order to correlate the
TransferComplete response.
FileSize: 0 (not used)
TargetFileName: <empty> (not used)
DelaySeconds: 0 (immediate)
SuccessURL: <empty> (not used)
FailureURL: <empty> (not used)

7.10 Resource [software]
The Resource [software] is a multi-instance Resource where each instance of the
Resource maps directly to an instance of Device.SoftwareModules.DeploymentUnit.{i}
object for the deployment aspects (install, uninstall) of the Resource [software].
The install and uninstall operation of the Resource [software] is performed using
a combination of the ChangeDUState and ChangeDUStateComplete RPCs.

Once a Resource [software] has been installed, the Resource shall be mapped
to the associated Device.SoftwareModules.ExecutionUnit.{i} objects in order to
activate and deactivate the associated execution unit.

The Resource [software] version and name shall be retrieved using the GetPa-
rameterValues RPC of TR-069 [4].

The activate and deactivate operations of the Resource [software] shall be per-
formed by manipulating the Device.SoftwareModules.ExecutionUnit.{i}.RequestedState
parameter using the SetParameterValues RPC.

NOTE: The Resource [software] provides support for only 1 Execution
Unit per Deployment Unit. If a Deployment Unit is discovered by

16

the M2M Service Layer that contains multiple Execution Units for a
Deployment Unit; only 1 Execution Unit is exposed. The selection
of which Execution Unit is implementation specific.

Table 12: Table 7.10-1: Resource [software]

Attribute Name of [software] Description
version Device.SoftwareModules.DeploymentUnit.{i}.Version
name Device.SoftwareModules.DeploymentUnit.{i}.Name
URL Device.SoftwareModules.DeploymentUnit.{i}.URL
install Use the

ChangeDUState:InstallOpStruct
installStatus Status is defined as:

Success if the
ChangeDUStateComplete RPC
indicates that the operation was
successful.
Failure if the response to the
ChangeDUState or
ChangeDUStateComplete RPCs
indicates that the operation failed.
In process if the ChangeDUState RPC
is initiated but the
ChangeDUStateComplete RPC has
not been received.

Activate The action that activates software
previously installed.

Deactivate The action that deactivates software.
activeStatus Status is defined as:

Success if the SetParameterValues
RPC indicates that the operation was
successful.
Failure if the response to the
SetParameterValues RPCs indicates
that the operation failed.
In process if the SetParameterValues
RPC is initiated but the response to
the SetParameterValues RPC has not
been received.

17

Table 13: Table 7.10-2: RPC ChangeDUState:InstallOpStruct Ar-
guments

RPC ChangeDUState:InstallOpStruct Argument
URL: URL of the Server that M2M Node uses to download the DU.
Username: Username credential of Server that the CPE uses to download the
DU - Supplied by the CSE.
Password: Password credential of Server that the CPE uses to download the
DU - Supplied by the CSE.
UUID: Supplied by the CSE and used to correlate the DU for the uninstall
operation.
ExecurtionEnvRef: <empty> not used

Table 14: Table 7.10-3: RPC ChangeDUState:UninstallOpStruct
Arguments

RPC ChangeDUState:Uninstall OpStruct Argument
UUID: UUID of the DU that was installed - Maintained by the CSE.
ExecutionEnvRef: <empty> not used

7.11 Resource [reboot]
The Resource [reboot] maps to either the Reboot RPC or FactoryReset RPC of
TR-069 [4].

When the reboot attribute of the Resource [reboot] is set to “True”, the CSE
shall execute the Reboot RPC of TR069 [4].

When the factoryReset attribute of Resource [reboot] is set to “True”, the CSE
shall execute the FactoryReset RPC of TR-069 [4].

Table 15: Table 7.11-1: Resource [reboot]

Attribute Name of [reboot] Description
reboot Executes the Reboot RPC
factoryReset FactoryReset RPC

18

Table 16: Table 7.11-2: RPC Reboot Arguments

RPC Reboot Arguments
CommandKey: Automatically set by the CSE where the reboot is set to “True”
in order to correlate the “M-Reboot” Event from the next Inform.

7.12 Resource [cmdhPolicy]
7.12.0 Introduction

The Resource [cmdhPolicy] represents a set of rules defining which CMDH
parameters will be used by default when a request issued by a local originator
contains the ec (event category) parameter but not all other CMDH parameters,
see clause D.12 of TS-0001 [1].

The Resource [cmdhPolicy] is a multi-instance Resource where each instance of
the Resource shall map to an instance of Device.X_oneM2M_org_CSE.{i}.CMDH.Policy.{i}
object.

The Policy instance shall be created using the Add Object RPC of TR-069 [4].

The Policy instance shall be deleted using the Delete Object RPC of TR-069 [4].

The information of a Policy instance shall be retrieved using the GetParameter-
Values RPC of TR-069 [4].

The information of a Policy instance shall be updated using the SetParameter-
Values RPC of TR-069 [4].

Table 17: Table 7.12-1: Resource [cmdhPolicy]

Attribute Name of [cmdhPolicy] X_oneM2M_org Parameter
name Device.X_oneM2M_org_CSE.{i}.CMDH.Policy.{i}.Name
cmdhDefaults Device.X_oneM2M_org_CSE.{i}.CMDH.Policy.{i}.DefaultRule
cmdhLimits Device.X_oneM2M_org_CSE.{i}.CMDH.Policy.{i}.LimitRules
cmdhNetworkAccessRules Device.X_oneM2M_org_CSE.{i}.CMDH.Policy.{i}.NetworkAccessECRules
cmdhBuffer Device.X_oneM2M_org_CSE.{i}.CMDH.Policy.{i}.BufferRules

7.12.1 Resource [activeCmdhPolicy]

The Resource [activeCmdhPolicy] provides a link to the currently active set of
CMDH policies, see clause D.12.1 of TS-0001 [1].

The Resource [activeCmdhPolicy] is mapped to the Enable parameter of the
Device.X_oneM2M_org_CSE.{i}.CMDH.Policy.{i} object.

The information of a Policy instance shall be updated using the SetParameter-
Values RPC of TR-069 [4].

19

Table 18: Table 7.12.1-1: Resource [activeCmdhPolicy]

Attribute Name of [activeCmdhPolicy] X_oneM2M_org Parameter
cmdhPolicy Device.X_oneM2M_org_CSE.{i}.CMDH.Policy.{i}.Enable

At most one Policy instance shall be
enabled at a time. As such the Policy
instance that has the Enable
parameter with a value of “True” is
the active CMDH policy.

7.12.2 Resource [cmdhDefaults]

The Resource [cmdhDefaults] defines default CMDH policy values, see clause
D.12.2 of TS-0001 [1].

The Resource [cmdhDefaults] is a multi-instance Resource where each instance of
the Resource shall map to an instance of Device.X_oneM2M_org_CSE.{i}.CMDH.Default.{i}
object.

The Default instance shall be created using the Add Object RPC of TR-069 [4].

The Default instance shall be deleted using the Delete Object RPC of TR-069
[4].

The information of a Default instance shall be retrieved using the GetParame-
terValues RPC of TR-069 [4].

The information of a Default instance shall be updated using the SetParameter-
Values RPC of TR-069 [4].

Table 19: Table 7.12.2-1: Resource [cmdhDefaults]

Attribute Name of [cmdhDefaults] X_oneM2M_org Parameter
cmdhDefEcValue Device.X_oneM2M_org_CSE.{i}.CMDH.Default.{i}.DefaultECRules
cmdhEcDefParamValues Device.X_oneM2M_org_CSE.{i}.CMDH.Default.{i}.DefaultECParamRules

7.12.3 Resource [cmdhDefEcValue]

The Resource [cmdhDefEcValue] represents a value for the ec (event category)
parameter of an incoming request, see clause D.12.3 of TS-0001 [1].

The Resource [cmdhDefEcValue] is a multi-instance Resource where each instance
of the Resource shall map to an instance of Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECRule.{i}
object.

The DefaultECRule instance shall be created using the Add Object RPC of
TR-069 [4].

20

The DefaultECRule instance shall be deleted using the Delete Object RPC of
TR-069 [4].

The information of a DefaultECRule instance shall be retrieved using the Get-
ParameterValues RPC of TR-069 [4].

The information of a DefaultECRule instance shall be updated using the SetPa-
rameterValues RPC of TR-069 [4].

Table 20: Table 7.12.3-1: Resource [cmdhDefEcValue]

Attribute Name of [cmdhDefEcValue] X_oneM2M_org Parameter
order Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECRule.{i}.Order
defEcValue Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECRule.{i}.EventCategory
requestOrigin Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECRule.{i}.RequestOrigin
requestContext Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECRule.{i}.RequestContext
requestContextNotification Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECRule.{i}.RequestContextNotificationEnable
requestCharacteristics Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECRule.{i}.RequestCharacteristics

7.12.4 Resource [cmdhEcDefParamValues]

The Resource [cmdhEcDefParamValues] represents a specific set of default values
for the CMDH related parameters rqet (request expiration timestamp), rset
(result expiration timestamp), oet (operational execution time), rp (response
persistence) and da (delivery aggregation) that are applicable for a given ec
(event category) if these parameters are not specified in the request, see clause
D.12.4 of TS-0001 [1].

The Resource [cmdhEcDefParamValues] is a multi-instance Resource
where each instance of the Resource shall map to an instance of De-
vice.X_oneM2M_org_CSE.{i}.CMDH.DefaultECParamRule.{i} object.

The DefaultECParamRule instance shall be created using the Add Object RPC
of TR-069 [4].

The DefaultECParamRule instance shall be deleted using the Delete Object
RPC of TR-069 [4].

The information of a DefaultECParamRule instance shall be retrieved using the
GetParameterValues RPC of TR069 [4].

The information of a DefaultECParamRule instance shall be updated using the
SetParameterValues RPC of TR-069 [4].

21

Table 21: Table 7.12.4-1: Resource [cmdhEcDefParamValues]

Attribute Name of
[cmdhEcDefParamValues] X_oneM2M_org Parameter
applicableEventCategory Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECParamRule.{i}.EventCategories
defaultRequestExpTime Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECParamRule.{i}.RequestExpTime
defaultResultExpTime Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECParamRule.{i}.ResultExpTime
defaultOpExecTime Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECParamRule.{i}.OperationExecTime
defaultRespPersistence Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECParamRule.{i}.ResponsePersistence
defaultDelAggregation Device.X_oneM2M_org_CSE.{i}.CMDH.DefaultECParamRule.{i}.DeliveryAggregation

7.12.5 Resource [cmdhLimits]

The Resource [cmdhLimits] represents limits for CMDH related parameter values,
see clause D.12.5 of TS-0001 [1].

The Resource [cmdhLimits] is a multi-instance Resource where each instance of
the Resource shall map to an instance of Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i}
object.

The Limit instance shall be created using the Add Object RPC of TR-069 [4].

The Limit instance shall be deleted using the Delete Object RPC of TR-069 [4].

The information of a Limit instance shall be retrieved using the GetParameter-
Values RPC of TR-069 [4].

The information of a Limit instance shall be updated using the SetParameter-
Values RPC of TR-069 [4].

Table 22: Table 7.12.5-1: Resource [cmdhLimits]

Attribute Name of [cmdhLimits] X_oneM2M_org Parameter
order Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i}.Order
requestOrigin Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i}.RequestOrigin
requestContext Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i}.RequestContext
requestContextNotification Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i}.RequestContextNotificationEnable
requestCharacteristics Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i}.RequestCharacteristics
limitsEventCategory Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i}.EventCategories
limitsRequestExpTime Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i}.RequestExpTime
limitsResultExpTime Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i}.ResultExpTime
limitsOpExecTime Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i}.OperationExecTime
limitsRespPersistence Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i}.ResponsePersistence
limitsDelAggregation Device.X_oneM2M_org_CSE.{i}.CMDH.Limit.{i}.DeliveryAggregation

22

7.12.6 Resource [cmdhNetworkAccessRules]

The Resource [cmdhNetworkAccessRules] defines the usage of underlying net-
works for forwarding information to other CSEs during processing of CMDH-
related requests in a CSE, see clause D.12.6 of TS-0001 [1].

The Resource [cmdhNetworkAccessRules] is a multi-instance Resource
where each instance of the Resource shall map to an instance of De-
vice.X_oneM2M_org_CSE.{i}.CMDH.NetworkAccessECRule.{i} object.

The NetworkAccessECRule instance shall be created using the Add Object RPC
of TR-069 [4].

The NetworkAccessECRule instance shall be deleted using the Delete Object
RPC of TR-069 [4].

The information of a NetworkAccessECRule instance shall be retrieved using
the GetParameterValues RPC of TR069 [4].

The information of a NetworkAccessECRule instance shall be updated using the
SetParameterValues RPC of TR069 [4].

Table 23: Table 7.12.6-1: Resource [cmdhNetworkAccessRules]

Attribute Name of
[cmdhNetworkAccessRules] X_oneM2M_org Parameter
applicableEventCategories Device.X_oneM2M_org_CSE.{i}.CMDH.NetworkAccessECRule.{i}.EventCategories
cmdhNwAccessRule Device.X_oneM2M_org_CSE.{i}.CMDH.NetworkAccessECRule.{i}.NetworkAccessRules

7.12.7 Resource [cmdhNwAccessRule]

The Resource [cmdhNwAccessRule] define limits in usage of specific underlying
networks for forwarding information to other CSEs during processing of CMDH-
related requests, see clause D.12.7 of TS-0001 [1].

The Resource [cmdhNwAccessRule] is a multi-instance Resource where each in-
stance of the Resource shall map to an instance of Device.X_oneM2M_org_CSE.{i}.CMDH.NetworkAccessECRule.{i}
object.

The NetworkAccessRule instance shall be created using the Add Object RPC of
TR-069 [4].

The NetworkAccessRule instance shall be deleted using the Delete Object RPC
of TR-069 [4].

The information of a NetworkAccessRule instance shall be retrieved using the
GetParameterValues RPC of TR-069 [4].

The information of a NetworkAccessRule instance shall be updated using the
SetParameterValues RPC of TR-069 [4].

23

Table 24: Table 7.12.7-1: Resource [cmdhNwAccessRule]

Attribute Name of
[cmdhNwAccessRule] X_oneM2M_org Parameter
targetNetwork Device.X_oneM2M_org_CSE.{i}.CMDH.NetworkAccessRule.{i}.TargetNetworks
minReqVolume Device.X_oneM2M_org_CSE.{i}.CMDH.NetworkAccessRule.{i}.MinimumReqVolume
backOffParameters Device.X_oneM2M_org_CSE.{i}.CMDH.NetworkAccessRule.{i}.BackoffTime

Device.X_oneM2M_org_CSE.{i}.CMDH.NetworkAccessRule.{i}.BackoffTimeIncrement
Device.X_oneM2M_org_CSE.{i}.CMDH.NetworkAccessRule.{i}.MaximumBackoffTime

otherConditions Device.X_oneM2M_org_CSE.{i}.CMDH.NetworkAccessRule.{i}.OtherConditions
allowedSchedule Device.X_oneM2M_org_CSE.{i}.CMDH.NetworkAccessRule.{i}.AllowedSchedule

7.12.8 Resource [cmdhBuffer]

The Resource [cmdhBuffer] represents limits in usage of buffers for temporarily
storing information that needs to be forwarded to other CSEs during processing
of CMDH-related requests in a CSE, see clause D.12.8 of TS-0001 [1].

The Resource [cmdhBuffer] is a multi-instance Resource where each instance of
the Resource shall map to an instance of Device.X_oneM2M_org_CSE.{i}.CMDH.Buffer.{i}
object.

The Buffer instance shall be created using the Add Object RPC of TR-069 [4].

The Buffer instance shall be deleted using the Delete Object RPC of TR-069 [4].

The information of a Buffer instance shall be retrieved using the GetParameter-
Values RPC of TR-069 [4].

The information of a Buffer instance shall be updated using the SetParameter-
Values RPC of TR-069 [4].

Table 25: Table 7.12.8-1: Resource [cmdhBuffer]

Attribute Name of [cmdhBuffer] X_oneM2M_org Parameter
applicableEventCategory Device.X_oneM2M_org_CSE.{i}.CMDH.Buffer.{i}.EventCategories
maxBufferSize Device.X_oneM2M_org_CSE.{i}.CMDH.Buffer.{i}.MaximumBufferSize
storagePriority Device.X_oneM2M_org_CSE.{i}.CMDH.Buffer.{i}.StoragePriority

7.13 Resource Type <mgmtCmd>
Each mgmtCmd Resource shall map to BBF TR-069 RPC commands based
on the value of cmdType. Accordingly, execReqArgs shall contain arguments
related to the corresponding BBF TR-069 RPCs. The details about corresponding
procedure mapping are described in clause 8.2.

24

Table 26: Table 7.13-1: Resource Type <mgmtCmd>

Attribute cmdType of mgmtCmd Attribute execReqArgs of mgmtCmd
cmdType = RESET Shall include all arguments related to

BBF FactoryReset RPC
cmdType = REBOOT Shall include all arguments related to

BBF Reboot RPC
cmdType = UPLOAD Shall include all arguments related to

BBF Reboot RPC
cmdType = DOWNLOAD Shall contain all arguments related to

BBF Reboot RPC
cmdType = SOFTWAREINSTALL Shall contain all arguments related to

BBF ChangeDUState RPC which
shall contain “InstallOpStruct”
structure.

cmdType =
SOFTWAREUNINSTALL

Shall contain all arguments related to
BBF ChangeDUState RPC which
shall contain “UninstallOpStruct”
structure.

7.14 Resource Type <execInstance>
The <execInstance> resource from TS-0004 [2] shall map to BBF CancelTransfer
RPC commands when it is disabled/cancelled using a Update operation or deleted
using a Delete operation. The details are described in clause 8.2.

7.15 Resource [registration]
The Resource [registration] represents the configuration information needed to
register and AE or CSE with a Registrar CSE.

The Resource [registration] is a multi-instance object where the key of the
object is the originatorID (i.e. AE-ID, CSE-ID). The following rules are used to
determine the object instance based on the originatorID:

• When the originatorID resource is for a CSE-ID, the TR-069 object instance
Device.X_oneM2M_org_CSE.{i} shall be used for the specified CSE-ID.

• When the originatorID resource is for an AE-ID, the TR-069 object instance
Device.X_oneM2M_org_AE.{i} shall be used for the specified AE-ID.

The information shall be created using the Add Object RPC of TR-069 [4].

The information shall be deleted using the Delete Object RPC of TR-069 [4].

The information shall be retrieved using the GetParameterValues RPC of TR-069
[4].

25

The capabilities shall be enabled and disabled using the SetParameterValues
RPC of TR-069 [4].

Table 27: Table 7.15-1: Resource [registration] for CSE

Attribute Name of [registration]
BBF TR-181 [6] Parameter
(X_oneM2M_org_CSE)

originatorID ID - See description of the type of
object to instantiate.

poA PointOfAccess
CSEBase CSEBase - Resource-ID of the

CSEBase of Registrar CSE.
CSE-ID CSEID - CSE-ID of the Registrar

CSE.
externalID ExternalID
triggerRecipientID TriggerRecipientID
mgmtLink [authenticationProfile] AuthenticationProfile (TR-069

reference parameter that references a
row in the De-
vice.X_oneM2M_org_SecuritySolution.AuthenticationProfile
table)

Table 28: Table 7.15-2: Resource [registration] for AE

Attribute Name of [registration]
BBF TR-181 [6] Parameter
(X_oneM2M_org_AE)

originatorID ID - See description of the type of
object to instantiate.

poA PointOfAccess
CSEBase CSEBase - Resource-ID of the

CSEBase of Registrar CSE.
CSE-ID CSEID - CSE-ID of the Registrar

CSE.
appID ApplicationID
mgmtLink [authenticationProfile] AuthenticationProfile (TR-069

reference parameter that references a
row in the De-
vice.X_oneM2M_org_SecuritySolution.AuthenticationProfile
table)

7.16 Resource [dataCollection]
The Resource [dataCollection] represents data collection (measurement) and
transmittal (reporting) properties for an AE.

26

The information shall be retrieved using the GetParameterValues RPC of TR-069
[4].

The capabilities shall be enabled and disabled using the SetParameterValues
RPC of TR-069 [4].

Table 29: Table 7.16-1: Resource [dataCollection]

Attribute Name of [dataCollection] BBF TR-181 [6] Parameter
containerPath ContainerPath
reportingSchedule ReportingSchedule
measurementSchedule CollectionSchedule

7.17 Security Solutions
7.17.1 Introduction

This clauses in the section of the present document contains information on how
to map the security specific management resources from TS-0022 [8] to managed
objects and parameters as defined in the TR-181 [6] data model or the Remote
Procedure Calls (RPCs) in TR-069 [4].

7.17.2 Resource [authenticationProfile]

The Resource [authenticationProfile] represents configuration information regard-
ing establishing mutually-authenticated secure communications. The security
principal using this configuration information can be a CSE or AE or the Man-
aged ADN/ASN/MN acting as security principal on behalf of AEs on the Node,
see clause 7.1.4 of TS0022 [8].

The Resource [authenticationProfile] is a multi-instance Resource where each in-
stance of the Resource shall map to an instance of Device.X_oneM2M_org_SecuritySolution.AuthenticationProfile.{i}
object.

The AuthenticationRule instance shall be created using the Add Object RPC of
TR-069 [4].

The AuthenticationRule instance shall be deleted using the Delete Object RPC
of TR-069 [4].

The information of a AuthenticationProfile instance shall be retrieved using the
GetParameterValues RPC of TR-069 [4].

The information of a AuthenticationProfile instance shall be updated using the
SetParameterValues RPC of TR-069 [4].

27

Table 30: Table 7.17.2-1: Resource [authenticationProfile]

Attribute Name of
[authenticationProfile]

Parameters of
Device.X_oneM2M_org_SecuritySolution.AuthenticationProfile.{i}

SUID SUID
TLSCiphersuites TLSCiphersuites
symmKeyID SymmetricKeyID
symmKeyValue SymmetricKeyValue
MAFKeyRegLabels MAFKeyRegLabels
MAFKeyRegDuration MAFKeyRegDuration
mycertFingerprint MyCert (reference)
rawPubKeyID RawPubKeyID
mgmtLink [trustAnchorCred] TrustAnchorCredentials (list of

references)

The parameter MyCert is a TR-069 reference parameter that references a row in
the Device.Security.Certificate table where the value of the mycertFingerprint at-
tribute matches the value of a Device.Security.Certficate.{i}.X_oneM2M_org_Fingerprint
parameter. The X_oneM2M_org_Fingerprint parameter shall be a unique key
for the Device.Security.Certificate table.

The parameter TrustAnchorCredentials is a list of TR-069 reference
parameter where each entry in the list references a row in the De-
vice.X_oneM2M_org_SecuritySolution.TrustAnchorCredential table.

7.17.3 Resource [trustAnchorCred]

The Resource [trustAnchorCred] represents configuration information regard-
ing certificates provided by certificate authorities used be managed entities to
authenticate peer endpoints, see clause 7.1.6 of TS-0022 [8].

The Resource [trustAnchorCred] is a multi-instance Resource where each instance
of the Resource shall map to an instance of Device.X_oneM2M_org_SecuritySolution.TrustAnchorCredential.{i}
object.

The TrustAnchorCredential instance shall be created using the Add Object RPC
of TR-069 [4].

The TrustAnchorCredential instance shall be deleted using the Delete Object
RPC of TR-069 [4].

The information of a TrustAnchorCredential instance shall be retrieved using
the GetParameterValues RPC of TR-069 [4].

The information of a TrustAnchorCredential instance shall be updated using the
SetParameterValues RPC of TR-069 [4].

28

Table 31: Table 7.17.3-1: Resource [trustAnchorCred]

Attribute Name of [trustAnchorCred]
Parameters of
Device.X_oneM2M_org_SecuritySolution.TrustAnchorCredential.{i}

certFingerprint Fingerprint
URI RemoteTrustStore

7.17.4 Resource [myCertFileCred]

The Resource [myCertFileCred] represents configuration information regarding
certificates presented by the managed entity to remote entities for the establish-
ment of secure communications, see clause 7.1.5 of TS-0022 [8].

The Resource [myCertFileCred] is a multi-instance Resource where each instance
of the Resource shall map to an instance of Device.Security.Certificate.{i} object.

The Certificate instance shall be created either using the Download RPC of
TR-069 [4] or via an out-of-band mechanism.

The Certificate instance shall be deleted using the Download RPC of TR-069 [4]
or via an out-of-band mechanism.

The information of a Certificate instance shall be retrieved using the GetParam-
eterValues RPC of TR-069 [4].

The information of a Certificate instance shall be updated using the SetParame-
terValues RPC of TR-069 [4].

Table 32: Table 7.17.4-1: Resource [myCertFileCred]

Attribute Name of [myCertFileCred]
Parameters of
Device.Security.Credential.{i}

SUIDs X_oneM2M_org_SUIDs
myCertFileFormat X_oneM2M_org_Format
myCertFileContent The certificate is downloaded as part

of the Download RPC of TR-069

The parameter AuthenticationProfile is a TR-069 reference parameter that refer-
ences a row in the Device.X_oneM2M_org_SecuritySolution.AuthenticationProfile
table where the value of the mycertFingerprint attribute matches the value
of a Device.Security.Certficate.{i}.X_oneM2M_org_Fingerprint parameter.
The X_oneM2M_org_Fingerprint parameter shall be a unique key for the
Device.Security.Certificate table.

29

7.17.5 Resource [MAFClientRegCfg]

The Resource [MAFClientRegCfg] represents configuration information that
permits a MAF client to register with a MAF, see clause 7.1.7 of TS-0022 [8].

The Resource [MAFClientRegCfg] is a multi-instance Resource where each in-
stance of the Resource shall map to an instance of Device.X_oneM2M_org_SecuritySolution.MAFClientRegistration.{i}
object.

The MAFClientRegistration instance shall be created using the Add Object RPC
of TR-069 [4].

The MAFClientRegistration instance shall be deleted using the Delete Object
RPC of TR-069 [4].

The information of a MAFClientRegistration instance shall be retrieved using
the GetParameterValues RPC of TR-069 [4].

The information of a MAFClientRegistration instance shall be updated using
the SetParameterValues RPC of TR-069 [4].

Table 33: Table 7.17.5-1: Resource [MAFClientRegCfg]

Attribute Name of
[MAFClientRegCfg]

Parameters of
Device.X_oneM2M_org_SecuritySolution.MAFClientRegistration.{i}

mgmtLink [authenticationProfile\ AuthenticationProfile (TR-069
reference parameter that references a
row in the De-
vice.X_oneM2M_org_SecuritySolution.AuthenticationProfile
table)

fqdn FQDN
adminFQDN AdminFQDN
httpPort HTTPPort
coapPort CoAPPort
websocketPort WebsocketPort
expirationTime ExpirationTimeStamp

Editor note: Correct mgmtLink row above(-> [authenticationProfile])

7.17.6 Resource [MEFClientRegCfg]

The Resource [MEFClientRegCfg] represents configuration information that
permits a MEF client to register with a MEF, see clause 7.1.8 of TS-0022 [8].

The Resource [MEFClientRegCfg] is a multi-instance Resource where each in-
stance of the Resource shall map to an instance of Device.X_oneM2M_org_SecuritySolution.MEFClientRegistration.{i}
object.

30

The MEFClientRegistration instance shall be created using the Add Object RPC
of TR-069 [4].

The MEFClientRegistration instance shall be deleted using the Delete Object
RPC of TR-069 [4].

The information of a MEFClientRegistration instance shall be retrieved using
the GetParameterValues RPC of TR069 [4].

The information of a MEFClientRegistration instance shall be updated using
the SetParameterValues RPC of TR069 [4].

Table 34: Table 7.17.6-1: Resource [MEFClientRegCfg]

Attribute Name of [MEFClientRegCfg]
Parameters of
Device.X_oneM2M_org_SecuritySolution.MEFClientRegistration.{i}

mgmtLink [authenticationProfile\ AuthenticationProfile (TR-069
reference parameter that references a
row in the De-
vice.X_oneM2M_org_SecuritySolution.AuthenticationProfile
table)

fqdn FQDN
adminFQDN AdminFQDN
httpPort HTTPPort
coapPort CoAPPort
websocketPort WebsocketPort
expirationTime ExpirationTimeStamp

Editor note: Correct mgmtLink row above(-> [authenticationProfile])

8 Mapping of procedures for management
8.0 Introduction
This clause contains all information on how to map management resource
primitives from TS-0004 [2] to the Remote Procedure Calls (RPCs) in TR-069
[4].

8.1 Resource Type <mgmtObj> primitive mappings
8.1.0 Introduction

This clause contains all information on how to map Resource Type <mgmtObj>
primitives from TS-0004 [2] to the Remote Procedure Calls (RPCs) in TR-069
[4].

31

8.1.1 Alias-Based Addressing Mechanism

In order to utilize the Alias-Based Addressing Mechanism, the mechanism has
to be supported by the ACS and CPE in order to map the M2M Service Layer
identifier for the Resource instance to the CPE object instance. If the AliasBased
Addressing Mechanism feature is not supported by either the ACS or CPE, the
CSE has to retain the mapping of the these M2M Resource instance identifiers.

8.1.2 Create primitive mapping

8.1.2.0 Introduction The Create Request and Response primitives shall map
to the AddObject RPC. The AddObject RPC is defined in TR-069 [4] as a
synchronous RPC and returns a successful response or one of the following fault
codes in Table 8.1.2.0-1.

Table 35: Table 8.1.2.0-1: AddObject Fault Code Mapping

Fault code Description Response Status Code
9001 Request denied (no

reason specified)
4000
(BAD_REQUEST)

9002 Internal error 4000
(BAD_REQUEST)

9003 Invalid arguments 4000
(BAD_REQUEST)

9004 Resources exceeded
(when used in
association with
SetParameterValues,
this cannot be used to
indicate Parameters in
error)

4000
(BAD_REQUEST)

9005 Invalid Parameter name
(associated with
Set/GetParameterValues,
GetParameterNames,
Set/GetParameterAttributes,
AddObject, and
DeleteObject)

5001
(NOT_IMPLEMENTED)

8.1.2.1 M2M Service Layer Resource Instance Identifier mapping
When the Resource is a multi-instance Resource, the AddObject RPC should
utilize the Alias-Based Addressing Mechanism as defined in Section 3.6.1 of
TR-069 [4] in order to use the Resource instance value of the URI.

32

8.1.3 Delete primitive mapping

8.1.3.1 Delete primitive mapping for deletion of Object Instances
The Delete Request and Response primitives that results in the deletion of a
Resource shall map to the DeleteObject RPC. The DeleteObject RPC is defined
in TR-069 [4] as a synchronous RPC and returns a successful response or one of
the following fault codes in Table 8.1.3.1-1.

Table 36: Table 8.1.3.1-1: DeleteObject Fault Code Mapping

Fault code Description Response Status Code
9001 Request denied (no

reason specified)
4000
(BAD_REQUEST)

9002 Internal error 4000
(BAD_REQUEST)

9003 Invalid arguments 4000
(BAD_REQUEST)

9005 Invalid Parameter name
(associated with
Set/GetParameterValues,
GetParameterNames,
Set/GetParameterAttributes,
AddObject, and
DeleteObject)

5001
(NOT_IMPLEMENTED)

8.1.3.2 Delete primitive mapping for software un-install operation
The Delete Request and Response primitives that results in a software un-install
operation (e.g. Resource [software]) shall use the ChangeDUState mechanism
defined in TR-069 [4]. The ChangeDUState mechanism is an asynchronous
command that consists of the synchronous ChangeDUState RPC for the un-
installation request and the asynchronous ChangeDUStateComplete RPC. The
ChangeDUState RPC returns a successful response or one of the following fault
codes in Table 8.1.3.2-1. A successful response means that the CPE has accepted
the ChangeDUState RPC.

Table 37: Table 8.1.3.2-1: ChangeDUState Fault Code Mapping

Fault code Description Response Status Code
9000 Method not supported 4000

(BAD_REQUEST)
9001 Request denied (no

reason specified)
4000
(BAD_REQUEST)

9002 Internal error 4000
(BAD_REQUEST)

33

Fault code Description Response Status Code
9004 Resources exceeded

(when used in
association with
SetParameterValues,
this cannot be used to
indicate Parameters in
error)

4000
(BAD_REQUEST)

Once the CPE has attempted to change the state of the deployment unit, the
CPE reports the result of the state change operation using the ChangeDUS-
tateComplete RPC. The ChangeDUStateComplete RPC indicates a successful
operation or one of the following fault codes in Table 8.1.3.2-2.

Table 38: Table 8.1.3.2-2: ChangeDUStateComplete Fault Code
Mapping

Fault code Description Response Status Code
9001 Request denied (no

reason specified)
4000
(BAD_REQUEST)

9003 Invalid arguments 4000
(BAD_REQUEST)

9012 File transfer server
authentication failure
(associated with Upload,
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

9013 Unsupported protocol
for file transfer
(associated with Upload,
Download,
ScheduleDownload,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

34

Fault code Description Response Status Code
9015 File transfer failure:

unable to contact file
server (associated with
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

9016 File transfer failure:
unable to access file
(associated with
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

9017 File transfer failure:
unable to complete
download (associated
with Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

35

Fault code Description Response Status Code
9018 File transfer failure: file

corrupted or otherwise
unusable (associated
with Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

9022 Invalid UUID Format
(associated with DUStat-
eChangeComplete or
AutonomousDUState-
ChangeComplete
methods: Install,
Update, and Uninstall)

4000
(BAD_REQUEST)

9023 Unknown Execution
Environment (associated
with DUStateChange-
Complete or
AutonomousDUState-
ChangeComplete
methods: Install only)

4000
(BAD_REQUEST)

9024 Disabled Execution
Environment (associated
with DUStateChange-
Complete or
AutonomousDUState-
ChangeComplete
methods: Install,
Update, and Uninstall)

4000
(BAD_REQUEST)

9025 Deployment Unit to
Execution Environment
Mismatch (associated
with DUStateChange-
Complete or
AutonomousDUState-
ChangeComplete
methods: Install and
Update)

4000
(BAD_REQUEST)

36

Fault code Description Response Status Code
9026 Duplicate Deployment

Unit (associated with
DUStateChangeCom-
plete or
AutonomousDUState-
ChangeComplete
methods: Install only)

4000
(BAD_REQUEST)

9027 System Resources
Exceeded (associated
with DUStateChange-
Complete or
AutonomousDUState-
ChangeComplete
methods: Install and
Update)

4000
(BAD_REQUEST)

9028 Unknown Deployment
Unit (associated with
DUStateChangeCom-
plete or
AutonomousDUState-
ChangeComplete
methods: Update and
Uninstall)

4000
(BAD_REQUEST)

9029 Invalid Deployment Unit
State (associated with
DUStateChangeCom-
plete or
AutonomousDUState-
ChangeComplete
methods: Install,
Update and Uninstall)

4000
(BAD_REQUEST)

9030 Invalid Deployment Unit
Update - Downgrade not
permitted (associated
with DUStateChange-
Complete or
AutonomousDUState-
ChangeComplete
methods: Update only)

4000
(BAD_REQUEST)

37

Fault code Description Response Status Code
9031 Invalid Deployment Unit

Update - Version not
specified (associated
with DUStateChange-
Complete or
AutonomousDUState-
ChangeComplete
methods: Update only)

4000
(BAD_REQUEST)

9032 Invalid Deployment Unit
Update - Version already
exists (associated with
DUStateChangeCom-
plete or
AutonomousDUState-
ChangeComplete
methods: Update only)

4000
(BAD_REQUEST)

8.1.4 Update primitive mapping

8.1.4.1 Update primitive mapping for Parameter modifications The
Update Request and Response primitives that modifies the value of Resource
attributes shall map to the SetParameterValues RPC. The SetParametersValue
RPC is defined in TR-069 [4] as a synchronous RPC and returns a successful
response or one of the following fault codes in Table 8.1.4.1-1.

Table 39: Table 8.1.4.1-1: SetParameterValues Fault Code Mapping

Fault code Description Response Status Code
9001 Request denied (no

reason specified)
4000
(BAD_REQUEST)

9002 Internal error 4000
(BAD_REQUEST)

9003 Invalid arguments 4000
(BAD_REQUEST)

9004 Resources exceeded
(when used in
association with
SetParameterValues,
this cannot be used to
indicate Parameters in
error)

4000
(BAD_REQUEST)

38

Fault code Description Response Status Code
9005 Invalid Parameter name

(associated with
Set/GetParameterValues,
GetParameterNames,
Set/GetParameterAttributes,
AddObject, and
DeleteObject)

5001
(NOT_IMPLEMENTED)

9006 Invalid Parameter type
(associated with
SetParameterValues)

4000
(BAD_REQUEST)

9007 Invalid Parameter value
(associated with
SetParameterValues)

4000
(BAD_REQUEST)

9008 Attempt to set a
non-writable Parameter
(associated with
SetParameterValues)

4000
(BAD_REQUEST)

8.1.4.2 Update primitive mapping for upload file transfer operations
The Update Request and Response primitives that results in an upload file
transfer operation (e.g. logStop attribute of the Resource [eventLog]) shall use
the Upload mechanism defined in TR-069 [4]. The Upload mechanism is an
asynchronous command that consists of the synchronous Upload RPC for the
Upload and the asynchronous TransferComplete RPC. The Upload RPC returns
a successful response or one of the following fault codes in Table 8.1.4.2-1. A
successful response means that the CPE has accepted the Upload RPC.

Table 40: Table 8.1.4.2-1: Upload Fault Code Mapping

Fault code Description Response Status Code
9000 Method not supported 4000

(BAD_REQUEST)
9001 Request denied (no

reason specified)
4000
(BAD_REQUEST)

9002 Internal error 4000
(BAD_REQUEST)

9003 Invalid arguments 4000
(BAD_REQUEST)

39

Fault code Description Response Status Code
9004 Resources exceeded

(when used in
association with
SetParameterValues,
this cannot be used to
indicate Parameters in
error)

4000
(BAD_REQUEST)

9011 Upload failure
(associated with Upload,
TransferComplete or
AutonomousTransfer-
Complete methods).

4000
(BAD_REQUEST)

9012 File transfer server
authentication failure
(associated with Upload,
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

9013 Unsupported protocol
for file transfer
(associated with Upload,
Download,
ScheduleDownload,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

Once the CPE has attempted to upload the file, the CPE reports the result of
the Upload operation using the TransferComplete RPC. The TransferComplete
RPC indicates a successful operation or one of the following fault codes in Table
8.1.4.2-2.

40

Table 41: Table 8.1.4.2-2: TransferComplete Fault Code Mapping

Fault code Description Response Status Code
9001 Request denied (no

reason specified)
4000
(BAD_REQUEST)

9002 Internal error 4000
(BAD_REQUEST)

9010 File transfer failure
(associated with
Download,
ScheduleDownload,
TransferComplete or
AutonomousTransfer-
Complete methods).

4000
(BAD_REQUEST)

9011 Upload failure
(associated with Upload,
TransferComplete or
AutonomousTransfer-
Complete methods).

4000
(BAD_REQUEST)

9012 File transfer server
authentication failure
(associated with Upload,
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

9014 File transfer failure:
unable to join multicast
group (associated with
Download,
TransferComplete or
AutonomousTransfer-
Complete methods).

4000
(BAD_REQUEST)

41

Fault code Description Response Status Code
9015 File transfer failure:

unable to contact file
server (associated with
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

9016 File transfer failure:
unable to access file
(associated with
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

9017 File transfer failure:
unable to complete
download (associated
with Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

42

Fault code Description Response Status Code
9018 File transfer failure: file

corrupted or otherwise
unusable (associated
with Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

9019 File transfer failure: file
authentication failure
(associated with
Download,
TransferComplete or
AutonomousTransfer-
Complete methods).

4000
(BAD_REQUEST)

9020 File transfer failure:
unable to complete
download within
specified time windows
(associated with
TransferComplete
method).

4000
(BAD_REQUEST)

8.1.4.3 Update primitive mapping for download file transfer operations
The Update Request and Response primitives that results in a download file
transfer operation (e.g. update attribute of Resource [firmware]) shall use the
Download mechanism defined in TR-069 [4]. The Download mechanism is an
asynchronous command that consists of the synchronous Download RPC for the
Download and the asynchronous TransferComplete RPC. The Download RPC
returns a successful response or one of the following fault codes in Table 8.1.4.3-1.
A successful response means that the CPE has accepted the Download RPC.

Table 42: Table 8.1.4.3-1: Download Fault Code Mapping

Fault code Description Response Status Code
9000 Method not supported 4000

(BAD_REQUEST)
9001 Request denied (no

reason specified)
4000
(BAD_REQUEST)

43

Fault code Description Response Status Code
9002 Internal error 4000

(BAD_REQUEST)
9003 Invalid arguments 4000

(BAD_REQUEST)
9004 Resources exceeded

(when used in
association with
SetParameterValues,
this cannot be used to
indicate Parameters in
error)

4000
(BAD_REQUEST)

9010 File transfer failure
(associated with
Download,
ScheduleDownload,
TransferComplete or
AutonomousTransfer-
Complete methods).

4000
(BAD_REQUEST)

9012 File transfer server
authentication failure
(associated with Upload,
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

9013 Unsupported protocol
for file transfer
(associated with Upload,
Download,
ScheduleDownload,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

Once the CPE has attempted to download the file, the CPE reports the result of
the download operation using the TransferComplete RPC. The TransferComplete

44

RPC indicates a successful operation or one of the following fault codes in Table
8.1.4.3-2.

Table 43: Table 8.1.4.3-2: TransferComplete Fault Code Mapping

Fault code Description
Response Status
Code

9001 Request denied (no
reason specified)

4000
(BAD_REQUEST)

9002 Internal error 4000
(BAD_REQUEST)

9010 File transfer failure
(associated with
Download,
ScheduleDownload,
TransferComplete or
AutonomousTransfer-
Complete methods).

4000
(BAD_REQUEST)

9011 Upload failure
(associated with Upload,
TransferComplete or
AutonomousTransfer-
Complete methods).

4000
(BAD_REQUEST)

9012 File transfer server
authentication failure
(associated with Upload,
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

9014 File transfer failure:
unable to join multicast
group (associated with
Download,
TransferComplete or
AutonomousTransfer-
Complete methods).

4000
(BAD_REQUEST)

45

Fault code Description
Response Status
Code

9015 File transfer failure:
unable to contact file
server (associated with
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

9016 File transfer failure:
unable to access file
(associated with
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

9017 File transfer failure:
unable to complete
download (associated
with Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

46

Fault code Description
Response Status
Code

9018 File transfer failure: file
corrupted or otherwise
unusable (associated
with Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

9019 File transfer failure: file
authentication failure
(associated with
Download,
TransferComplete or
AutonomousTransfer-
Complete methods).

4000
(BAD_REQUEST)

9020 File transfer failure:
unable to complete
download within
specified time windows
(associated with
TransferComplete
method).

4000
(BAD_REQUEST)

8.1.4.4 Update primitive mapping for reboot operation The Update
Request and Response primitives that results in a reboot operation (e.g. reboot
attribute of Resource [reboot]) shall use the Reboot RPC defined in TR-069
[4]. The Reboot RPC is asynchronous command. The Reboot RPC returns a
successful response or one of the following fault codes in Table 8.1.4.4-1.

Table 44: Table 8.1.4.4-1: Reboot Fault Code Mapping

Fault code Description Response Status Code
9001 Request denied (no

reason specified)
4000
(BAD_REQUEST)

9002 Internal error 4000
(BAD_REQUEST)

9003 Invalid arguments 4000
(BAD_REQUEST)

47

8.1.4.5 Update primitive mapping for factory reset operation The
Update Request and Response primitives that results in a factory reset operation
(e.g. factoryReset attribute of Resource [reboot]) shall use the FactoryReset RPC
defined in TR-069 [4]. The FactoryReset RPC is an asynchronous command.
The FactoryReset RPC returns a successful response or one of the following fault
codes in Table 8.1.4.5-1.

Table 45: Table 8.1.4.5-1: FactoryReset Fault Code Mapping

Fault code Description Response Status Code
9000 Method not supported 4000

(BAD_REQUEST)
9001 Request denied (no

reason specified)
4000
(BAD_REQUEST)

9002 Internal error 4000
(BAD_REQUEST)

9003 Invalid arguments 4000
(BAD_REQUEST)

8.1.4.6 Update primitive mapping for software install operation The
Update Request and Response primitives that results in a software installation
operation (e.g. install attribute of Resource [software]) shall use the Change-
DUState mechanism defined in TR-069 [4]. The ChangeDUState mechanism is
an asynchronous command that consists of the synchronous ChangeDUState
RPC for the download and the asynchronous ChangeDUStateComplete RPC.
The ChangeDUState RPC returns a successful response or one of the following
fault codes in Table 8.1.4.6-1. A successful response means that the CPE has
accepted the ChangeDUState RPC.

Table 46: Table 8.1.4.6-1: ChangeDUState Fault Code Mapping

Fault code Description Response Status Code
9000 Method not supported 4000

(BAD_REQUEST)
9001 Request denied (no

reason specified)
4000
(BAD_REQUEST)

9002 Internal error 4000
(BAD_REQUEST)

48

Fault code Description Response Status Code
9004 Resources exceeded

(when used in
association with
SetParameterValues,
this cannot be used to
indicate Parameters in
error)

4000
(BAD_REQUEST)

Once the CPE has attempted to change the state of the deployment unit, the
CPE reports the result of the state change operation using the ChangeDUS-
tateComplete RPC. The ChangeDUStateComplete RPC indicates a successful
operation or one of the following fault codes in Table 8.1.4.6-2.

Table 47: Table 8.1.4.6-2: ChangeDUStateComplete Fault Code
Mapping

Fault code Description Response Status Code
9001 Request denied (no

reason specified)
4000
(BAD_REQUEST)

9003 Invalid arguments 4000
(BAD_REQUEST)

9012 File transfer server
authentication failure
(associated with Upload,
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

9013 Unsupported protocol
for file transfer
(associated with Upload,
Download,
ScheduleDownload,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

49

Fault code Description Response Status Code
9015 File transfer failure:

unable to contact file
server (associated with
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

9016 File transfer failure:
unable to access file
(associated with
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

9017 File transfer failure:
unable to complete
download (associated
with Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

50

Fault code Description Response Status Code
9018 File transfer failure: file

corrupted or otherwise
unusable (associated
with Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

9022 Invalid UUID Format
(associated with DUStat-
eChangeComplete or
AutonomousDUState-
ChangeComplete
methods: Install,
Update, and Uninstall)

4000
(BAD_REQUEST)

9023 Unknown Execution
Environment (associated
with DUStateChange-
Complete or
AutonomousDUState-
ChangeComplete
methods: Install only)

4000
(BAD_REQUEST)

9024 Disabled Execution
Environment (associated
with DUStateChange-
Complete or
AutonomousDUState-
ChangeComplete
methods: Install,
Update, and Uninstall)

4000
(BAD_REQUEST)

9025 Deployment Unit to
Execution Environment
Mismatch (associated
with DUStateChange-
Complete or
AutonomousDUState-
ChangeComplete
methods: Install and
Update)

4000
(BAD_REQUEST)

51

Fault code Description Response Status Code
9026 Duplicate Deployment

Unit (associated with
DUStateChangeCom-
plete or
AutonomousDUState-
ChangeComplete
methods: Install only)

4000
(BAD_REQUEST)

9027 System Resources
Exceeded (associated
with DUStateChange-
Complete or
AutonomousDUState-
ChangeComplete
methods: Install and
Update)

4000
(BAD_REQUEST)

9028 Unknown Deployment
Unit (associated with
DUStateChangeCom-
plete or
AutonomousDUState-
ChangeComplete
methods: Update and
Uninstall)

4000
(BAD_REQUEST)

9029 Invalid Deployment Unit
State (associated with
DUStateChangeCom-
plete or
AutonomousDUState-
ChangeComplete
methods: Install,
Update and Uninstall)

4000
(BAD_REQUEST)

9030 Invalid Deployment Unit
Update - Downgrade not
permitted (associated
with DUStateChange-
Complete or
AutonomousDUState-
ChangeComplete
methods: Update only)

4000
(BAD_REQUEST)

52

Fault code Description Response Status Code
9031 Invalid Deployment Unit

Update - Version not
specified (associated
with DUStateChange-
Complete or
AutonomousDUState-
ChangeComplete
methods: Update only)

4000
(BAD_REQUEST)

9032 Invalid Deployment Unit
Update - Version already
exists (associated with
DUStateChangeCom-
plete or
AutonomousDUState-
ChangeComplete
methods: Update only)

4000
(BAD_REQUEST)

8.1.5 Retrieve primitive mapping

The Retrieve Request and Response primitives shall map to the GetParame-
terValues RPC. The GetParametersValue RPC is defined in TR-069 [4] as a
synchronous RPC and returns a successful response or one of the following fault
codes in Table 8.1.5-1.

Table 48: Table 8.1.5-1: GetParameterValues Fault Code Mapping

Fault code Description Response Status Code
9001 Request denied (no

reason specified)
4000
(BAD_REQUEST)

9002 Internal error 4000
(BAD_REQUEST)

9003 Invalid arguments 4000
(BAD_REQUEST)

9004 Resources exceeded
(when used in
association with
SetParameterValues,
this cannot used to
indicate Parameters in
error)

4000
(BAD_REQUEST)

53

Fault code Description Response Status Code
9005 Invalid Parameter name

(associated with
Set/GetParameterValues,
GetParameterNames,
Set/GetParameterAttributes,
AddObject, and
DeleteObject)

4000
(BAD_REQUEST)

8.1.6 Notify primitive mapping

8.1.6.0 Introduction The NotifyRequest and Response primitives permit
notifications to AE or CSEs that have subscribed to a Resource.

While TR-069 [4] has the capability to notify the subscribed ACS when an
object’s parameter has been modified, TR069 [4] does not have the capability
for an ACS to be notified if any parameter within the object has been modified
unless the ACS individually subscribes to all the parameters of the object.

As such the procedure for mapping the Notify Request and Response primitives
for TR-069 [4] is not possible unless the CSE subscribes to receive notification
to all the parameters of an Object that are mapped to the Resource’s attributes.

NOTE: In many implementations, subscribing to all the parameters
of an Object that are mapped to the Resource can cause performance
issues in the CPE as well as the CSE. As such using the attribute
based subscription capabilities of TR-069 [4] for subscription of
Resources should be avoided when possible.

8.1.6.1 Procedure for subscribed Resource attributes. When a <sub-
scription> Resource for a <mgmtObj> Resource is Created, Deleted or Updated
the CSE shall map to the SetParameterAttributes RPC in the following manner:

• TR-069 [4] provides the capability to subscribe to changes of a specific
attribute through the use of the SetParameterAttributes RPC using the
“Active” value for the Notification parameter.

• TR-069 [4] provides the capability to un-subscribe to changes of a specific
attribute through the use of the SetParameterAttributes RPC using the
“None” value for the Notification parameter.

The SetParametersAttributes RPC is defined in TR-069 [4] as a synchronous
RPC and returns a successful response or one of the following fault codes in
Table 8.1.6.1-1.

54

Table 49: Table 8.1.6.1-1: SetParameterAttributes Fault Code
Mapping

Fault code Description Response Status Code
9000 Method not supported 4000

(BAD_REQUEST)
9001 Request denied (no

reason specified)
4000
(BAD_REQUEST)

9002 Internal error 4000
(BAD_REQUEST)

9003 Invalid arguments 4000
(BAD_REQUEST)

9004 Resources exceeded
(when used in
association with
SetParameterValues,
this cannot be used to
indicate Parameters in
error)

4000
(BAD_REQUEST)

9010 File transfer failure
(associated with
Download,
ScheduleDownload,
TransferComplete or
AutonomousTransfer-
Complete methods).

4000
(BAD_REQUEST)

8.1.6.2 Notification primitive mapping Notify Request and Response
primitives shall map to the TR-069 notification mechanism. CPEs produce
notifications for subscribed attributes using the TR-069 Inform method, the
Inform method has an argument Event that has as one of the EventCodes with
the value “4 VALUE CHANGE” indicating that a subscribed parameter’s value
has changed. The parameter(s) that have changed are included ParameterList
argument of the Inform method.

The ParameterList argument is list of name-value pairs; the name is parameter
name and shall be mapped to the objectPath attribute of the Resource while
the value is the most recent value of the parameter.

NOTE: TR-069 CPEs do not report value changes of parameters
that were modified by the ACS.

55

8.2 <mgmtCmd> and <execInstance> resource primitive
mappings
8.2.1 Update (Execute) primitive for the <mgmtCmd> resource

8.2.1.0 Introduction When the Update Request primitive for <mgmtCmd>
resource addresses the execEnable attribute of the <mgmtCmd> resource, it
effectively triggers an Execute <mgmtCmd> procedure.

The Hosting CSE performs command conversion of its <execInstance> sub-
resources. The mapping between the <execInstance> attributes and the TR-069
[4] RPC procedures triggered is based on the value of the cmdType attribute
of the <mgmtCmd> resource defined in Table 8.2.1.0-1. The CPE acceptance
of the corresponding RPC procedures is indicated by returning a successful
Response primitive to the initial Update Request.

The Fault Codes which may be returned by the CPE to the Hosting CSE are
mapped onto execResult codes and stored in the corresponding <execInstance>
attributes, and are detailed in the following clauses:

Table 50: Table 8.2.1.0-1 Mapping of Execute <mgmtCmd> primi-
tives to BBF TR-069 RPC

cmdType value BBF TR-069 RPCs
“DOWNLOAD” Download RPC (see clause 8.2.1.1)

and TransferComplete RPC (clause
8.2.1.3)

“UPLOAD” Upload RPC (clause 8.2.1.2) and
TransferComplete RPC (clause
8.2.1.3)

“SOFTWAREINSTALL” ChangeDUState RPC (clause 8.2.1.4)
and ChangeDUStateComplete RPC
(clause 8.2.1.5)

“SOFTWAREUNINSTALL” ChangeDUState RPC (clause 8.2.1.4)
and ChangeDUStateComplete RPC
(clause 8.2.1.5)

“REBOOT” Reboot RPC (clause 8.2.1.6)
“RESET” Factory reset RPC (clause 8.2.1.7)

8.2.1.1 Execute File Download The download file transfer operation may
use the Download mechanism defined in TR-069 [4]. The Download mechanism
is an asynchronous command which returns a successful response or one of
the following fault codes mapped onto execResult values as detailed in Table
8.2.1.1-1. A successful response to the Update primitive triggering the Execute
procedure means that the CPE has accepted the Download RPC.

56

Table 51: Table 8.2.1.1-1: Download Fault Code Mapping

Fault code Description execResult Code
9000 Method not supported STATUS_REQUEST_UNSUPPORTED
9001 Request denied (no

reason specified)
STATUS_REQUEST_DENIED

9002 Internal error STATUS_INTERNAL_ERROR
9003 Invalid arguments STATUS_INVALID_ARGUMENTS
9004 Resources exceeded

(when used in
association with
SetParameterValues,
this cannot be used to
indicate Parameters in
error).

STATUS_RESOURCES_EXCEEDED

9010 File transfer failure
(associated with
Download,
ScheduleDownload,
TransferComplete or
AutonomousTransfer-
Complete methods).

STATUS_FILE_TRANSFER_FAILED

9012 File transfer server
authentication failure
(associated with Upload,
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods, not associated
with Scheduled
Download method).

STATUS_FILE_TRANSFER_SERVER_AUTHENTICATION_FAILURE

57

Fault code Description execResult Code
9013 Unsupported protocol

for file transfer
(associated with Upload,
Download,
ScheduleDownload,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

STATUS_UNSUPPORTED_PROTOCOL

8.2.1.2 Execute File Upload Operations The upload file transfer operation
shall use the Upload mechanism defined in TR-069 [4]. The Upload mechanism
is an asynchronous command that consists of the synchronous Upload RPC for
the Upload and the asynchronous TransferComplete RPC. The Upload RPC
returns a successful response or one of the following fault codes mapped onto
execResult values as detailed in Table 8.2.1.2-1. A successful response to the
Update primitive triggering the execute procedure means that the CPE has
accepted the Upload RPC in Table 8.2.1.2-1.

Table 52: Table 8.2.1.2-1: Upload Fault Code Mapping

Fault code Description execResult Code
9000 Method not supported STATUS_REQUEST_UNSUPPORTED
9001 Request denied (no

reason specified)
STATUS_REQUEST
DENIED

9002 Internal error STATUS_INTERNAL_ERROR
9003 Invalid arguments STATUS_INVALID_ARGUMENTS
9004 Resources exceeded

(when used in
association with
SetParameterValues,
this cannot be used to
indicate Parameters in
error)

STATUS_RESOURCES_EXCEEDED

9011 Upload failure
(associated with Upload,
TransferComplete or
AutonomousTransfer-
Complete methods).

STATUS_UPLOAD_FAILED

58

Fault code Description execResult Code
9012 File transfer server

authentication failure
(associated with Upload,
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

STATUS_FILE_TRANSFER_SERVER_AUTHENTICATION_FAILURE

9013 Unsupported protocol
for file transfer
(associated with Upload,
Download,
ScheduleDownload,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

STATUS_UNSUPPORTED_PROTOCOL

8.2.1.3 Report Results using TransferComplete RPC After a File Down-
load or Upload has been attempted, the result of the operation is reported using
the TransferComplete RPC. The TransferComplete RPC indicates a successful
operation or one of the following fault codes mapped onto execResult values in
Table 8.2.1.3-2.

Table 53: Table 8.2.1.3-2: TransferComplete Fault Code Mapping

Fault code Description execResult Code
9001 Request denied (no

reason specified)
STATUS_REQUEST
DENIED

9002 Internal error STATUS_INTERNAL_ERROR
9010 File transfer failure

(associated with
Download,
ScheduleDownload,
TransferComplete or
AutonomousTransfer-
Complete methods).

STATUS_FILE_TRANSFER_FAILED

59

Fault code Description execResult Code
9011 Upload failure

(associated with Upload,
TransferComplete or
AutonomousTransfer-
Complete methods).

STATUS_UPLOAD_FAILED

9012 File transfer server
authentication failure
(associated with Upload,
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

STATUS_FILE_TRANSFER_SERVER_AUTHENTICATION_FAILURE

9014 File transfer failure:
unable to join multicast
group (associated with
Download,
TransferComplete or
AutonomousTransfer-
Complete methods).

STATUS_FILE_TRANSFER_FAILED_MULTICAST_GROUP_UNABLE_JOIN

9015 File transfer failure:
unable to contact file
server (associated with
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

STATUS_FILE_TRANSFER_FAILED_SERVER_CONTACT_FAILED

60

Fault code Description execResult Code
9016 File transfer failure:

unable to access file
(associated with
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

STATUS_FILE_TRANSFER_FAILED_FILE_ACCESS_FAILED

9017 File transfer failure:
unable to complete
download (associated
with Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

STATUS_FILE_TRANSFER_FAILED_DOWNLOAD_INCOMPLETE

9018 File transfer failure: file
corrupted or otherwise
unusable (associated
with Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

STATUS_FILE_TRANSFER_FAILED_FILE_CORRUPTED

9019 File transfer failure: file
authentication failure
(associated with
Download,
TransferComplete or
AutonomousTransfer-
Complete methods).

STATUS_FILE_TRANSFER_FILE_AUTHENTICATION_FAILURE

61

Fault code Description execResult Code
9020 File transfer failure:

unable to complete
download within
specified time windows
(associated with
TransferComplete
method).

STATUS_FILE_TRANSFER_WINDOW_EXCEEDED

8.2.1.4 Execute Software Operations with ChangeDUState RPC The
software installation and uninstall operations shall use the ChangeDUState
mechanism defined in TR-069 [4]. The ChangeDUState mechanism is an asyn-
chronous command that consists of the synchronous ChangeDUState RPC and
returns a successful response or one of the fault codes mapped onto execResult
values as detailed in Table 8.2.1.4.-1. A successful response to the Update
primitive triggering the Execute procedure means that the CPE has accepted
the ChangeDUState RPC.

Table 54: Table 8.2.1.4-1: ChangeDUState Fault Code Mapping

Fault code Description execResult Code
9000 Method not supported STATUS_REQUEST_UNSUPPORTED
9001 Request denied (no

reason specified)
STATUS_REQUEST
DENIED

9002 Internal error STATUS_INTERNAL_ERROR
9004 Resources exceeded

(when used in
association with
SetParameterValues,
this cannot be used to
indicate Parameters in
error)

STATUS_RESOURCES_EXCEEDED

8.2.1.5 Report Results with ChangeDUStateComplete RPC After
software installation and uninstall operations using a ChangeDUState mechanism
as defined in TR-069 [4], the result of the state change operation is retrieved
using the ChangeDUStateComplete RPC. The ChangeDUStateComplete RPC
indicates a successful operation or one of the fault codes mapped onto execResult
values as detailed in Table 8.2.1.5.-1.

62

Table 55: Table 8.2.1.5-1: ChangeDUStateComplete Fault Code
Mapping

Fault code Description execResult Code
9001 Request denied (no

reason specified)
STATUS_REQUEST_DENIED

9003 Invalid arguments STATUS_INVALID_ARGUMENTS
9012 File transfer server

authentication failure
(associated with Upload,
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

STATUS_FILE_TRANSFER_SERVER_AUTHENTICATION_FAILURE

9013 Unsupported protocol
for file transfer
(associated with Upload,
Download,
ScheduleDownload,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

STATUS_UNSUPPORTED_PROTOCOL

9015 File transfer failure:
unable to contact file
server (associated with
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

STATUS_FILE_TRANSFER_FAILED_SERVER_CONTACT_FAILED

63

Fault code Description execResult Code
9016 File transfer failure:

unable to access file
(associated with
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

STATUS_FILE_TRANSFER_FAILED_FILE_ACCESS_FAILED

9017 File transfer failure:
unable to complete
download (associated
with Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

STATUS_FILE_TRANSFER_FAILED_DOWNLOAD_INCOMPLETE

9018 File transfer failure: file
corrupted or otherwise
unusable (associated
with Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

STATUS_FILE_TRANSFER_FAILED_FILE_CORRUPTED

9022 Invalid UUID Format
(associated with DUStat-
eChangeComplete or
AutonomousDUState-
ChangeComplete
methods: Install,
Update, and Uninstall)

STATUS_INVALID_UUID_FORMAT

64

Fault code Description execResult Code
9023 Unknown Execution

Environment (associated
with DUStateChange-
Complete or
AutonomousDUState-
ChangeComplete
methods: Install only)

STATUS_UNKNOWN_EXECUTION_ENVIRONMENT

9024 Disabled Execution
Environment (associated
with DUStateChange-
Complete or
AutonomousDUState-
ChangeComplete
methods: Install,
Update, and Uninstall)

STATUS_DISABLED_EXECUTION_ENVIRONMENT

9025 Deployment Unit to
Execution Environment
Mismatch (associated
with DUStateChange-
Complete or
AutonomousDUState-
ChangeComplete
methods: Install and
Update)

STATUS_EXECUTION_ENVIRONMENT_MISMATCH

9026 Duplicate Deployment
Unit (associated with
DUStateChangeCom-
plete or
AutonomousDUState-
ChangeComplete
methods: Install only)

STATUS_DUPLICATE_DEPLOYMENT_UNIT

9027 System Resources
Exceeded (associated
with DUStateChange-
Complete or
AutonomousDUState-
ChangeComplete
methods: Install and
Update)

STATUS_SYSTEM_RESOURCES_EXCEEDED

65

Fault code Description execResult Code
9028 Unknown Deployment

Unit (associated with
DUStateChangeCom-
plete or
AutonomousDUState-
ChangeComplete
methods: Update and
Uninstall)

STATUS_UNKNOWN_DEPLOYMENT_UNIT

9029 Invalid Deployment Unit
State (associated with
DUStateChangeCom-
plete or
AutonomousDUState-
ChangeComplete
methods: Install,
Update and Uninstall)

STATUS_INVALID_DEPLOYMENT_UNIT_STATE

9030 Invalid Deployment Unit
Update - Downgrade not
permitted (associated
with DUStateChange-
Complete or
AutonomousDUState-
ChangeComplete
methods: Update only)

STATUS_INVALID_DEPLOYMENT_UNIT_UPDATE_DOWNGRADE_DISALLOWED

9031 Invalid Deployment Unit
Update - Version not
specified (associated
with DUStateChange-
Complete or
AutonomousDUState-
ChangeComplete
methods: Update only)

STATUS_INVALID_DEPLOYMENT_UNIT_UPDATE_UPGRADE_DISALLOWED

9032 Invalid Deployment Unit
Update - Version already
exists (associated with
DUStateChangeCom-
plete or
AutonomousDUState-
ChangeComplete
methods: Update only)

STATUS_INVALID_DEPLOYMENT_UNIT_UPDATE_VERSION_EXISTS

8.2.1.6 Execute Reboot operation The reboot operation shall use the
Reboot RPC defined in TR-069 [4]. The Reboot RPC is a synchronous command.

66

A successful response to the Update primitive triggering the Execute procedure
means that the CPE has accepted the Reboot RPC. The Reboot RPC returns a
successful response or one of the fault codes mapped onto execResult values as
detailed in Table 8.2.1.6-1.

Table 56: Table 8.2.1.6-1: Reboot Fault Code Mapping

Fault code Description execResult Code
9001 Request denied (no

reason specified)
STATUS_REQUEST_DENIED

9002 Internal error STATUS_INTERNAL_ERROR
9003 Invalid arguments STATUS_INVALID_ARGUMENTS

8.2.1.7 Execute Factory Reset operation The factory reset operation shall
use the FactoryReset RPC defined in TR-069 [4]. The FactoryReset RPC is a
synchronous command. A successful response to the Update primitive triggering
the Execute procedure means that the CPE has accepted the FactoryReset RPC.
The FactoryReset RPC returns a successful response or one of the fault codes
mapped onto execResult values as detailed in Table 8.2.1.7-1.

Table 57: Table 8.2.1.7-1: FactoryReset Fault Code Mapping

Fault code Description execResult Code
9000 Method not supported STATUS_REQUEST_UNSUPPORTED
9001 Request denied (no

reason specified)
STATUS_REQUEST_DENIED

9002 Internal error STATUS_INTERNAL_ERROR
9003 Invalid arguments STATUS_INVALID_ARGUMENTS

8.2.2 Delete <mgmtCmd> resource primitive mapping

The Delete Request primitive for the <mgmtCmd> resource may initiate TR-
069 [4] RPC commands for the corresponding <execInstance> sub-resources as
follows:

• If there are no <execInstance> sub-resources with RUNNING execStatus, a
successful response to the Delete primitive is returned and the <mgmtCmd>
resource is deleted without triggering any TR-069 [4] RPCs.

• If there are <execInstance> sub-resources with RUNNING execStatus that
resulted in cancellable TR-069 [4] RPCs (e.g. File Upload and File Down-
load RPCs), a TR-069 [4] CancelTransfer RPC shall be initiated for each
cancellable operation. Upon completion of all the cancellation operations,
if any fault codes are returned by the CPE, an unsuccessful Response to
the Delete primitive with status code “Delete mgmtCmd- execInstance

67

cancellation error” is returned, and the <mgmtCmd> resource is not
deleted. The execStatus attribute of each specific <execInstance> is set to
CANCELLED and the execResult attribute is set to “STATUS_SUCCESS”
for successful RPCs. For the unsuccessful case, execResult is determined
from the RPC fault codes as detailed in Table 8.2.2-1. If all cancellation
operations are successful on the managed entity, a successful Response to
the Delete primitive is returned and the <mgmtCmd> resource is deleted.

• If there is at least one <execInstance> sub-resource with RUNNING exec-
Status that resulted in non-cancellable TR-069 [4] RPCs (e.g. RPCs other
than File Upload and File Download RPCs), the execStatus attribute of the
specific <execInstance> is changed to STATUS_NON_CANCELLABLE.
An unsuccessful Response to the Delete primitive with status code
“Delete mgmtCmd- execInstance cancellation error” is returned and the
<mgmtCmd> resource is not deleted.

Table 58: Table 8.2.2-1: CancelTransfer Fault Code Mapping for
Delete <mgmtCmd>

Fault code Description execResult Code
9000 Method not supported STATUS_REQUEST_UNSUPPORTED
9001 Request denied (no

reason specified)
STATUS_REQUEST
DENIED

9021 Cancellation of file
transfer not permitted
in current transfer state

STATUS_CANCELLATION_DENIED

8.2.3 Update (Cancel) <execInstance> primitive mapping

When the Update Request primitive for an <execInstance> sub-resource ad-
dresses the execDisable attribute of the <execInstance > sub-resource, it effec-
tively triggers a Cancel <execInstance> resource procedure.

The hosting CSE determines whether the <execInstance> resource has a RUN-
NING execStatus and weather the resulting TR-069 [4] RPCs are cancellable.
Currently, only the TR-069 File Upload and File Download RPCs are cancellable
using the TR-069 [4] CancelTransfer RPC:

• If the addressed <execInstance> sub-resource has an execStatus other
than RUNNING, an un-successful Response to the Update primitive is
returned with status code “Cancel execInstance - already complete”.

• If the addressed <execInstance> sub-resources has RUNNING execStatus
and resulted in cancellable TR-069 [4] RPCs (e.g. File Upload and File
Download RPCs), a BBF TR-069 [4] CancelTransfer RPC shall be initi-
ated. For a successful CancelTransfer RPC the execStatus attribute of the
specific <execInstance> is set to CANCELLED and a successful Response
is sent to the Update primitive. For a successful CancelTransfer RPC the

68

execStatus attribute of the specific <execInstance> is set to CANCELLED,
the execResult attribute is set to “STATUS_SUCCESS” and a successful
Response is sent to the Update primitive. For an unsuccessful Cancel-
Transfer RPC the execResult attribute is determined from the RPC fault
codes as detailed in Table 8.2.3-1 and an unsuccessful Response is sent to
the Update primitive with status code “Cancel execInstance - cancellation
error”.

• If the addressed <execInstance> sub-resources has RUNNING execStatus
and resulted non-cancellable TR-069 [4] RPCs (e.g. RPCs other than
File Upload and File Download RPCs), the execStatus attribute of the
specific <execInstance> is changed to STATUS_NON_CANCELLABLE.
An unsuccessful Response is sent to the Update primitive with status code
“Cancel execInstance - not cancellable”.

Table 59: Table 8.2.3-1: CancelTransfer Fault Code Mapping for
Update (Cancel) <execInstance>

Fault code Description execResult Code
9000 Method not supported STATUS_REQUEST_UNSUPPORTED
9001 Request denied (no

reason specified)
STATUS_REQUEST
DENIED

9021 Cancellation of file
transfer not permitted
in current transfer state

STATUS_CANCELLATION_DENIED

8.2.4 Delete <execInstance> primitive mapping

The Delete Request primitive for an <execInstance> sub-resource may initiate
TR-069 [4] RPC commands for the corresponding <execInstance> sub-resources
as follows:

• If the addressed <execInstance> sub-resource has an execStatus other
than RUNNING, an successful Response to the Delete primitive is returned
and the <execInstance> sub-resource is deleted without triggering any
TR-069 [4] RPCs.

• If the addressed <execInstance> sub-resource has RUNNING execStatus
and resulted in cancellable TR-069 [4] RPCs (e.g. File Upload and File
Download RPCs), a BBF TR-069 [4] CancelTransfer RPC shall be initi-
ated. For a successful CancelTransfer RPC a successful response is sent
to the Delete primitive and the <execInstance> sub-resource is deleted.
For an unsuccessful CancelTransfer RPC the execStatus attribute is de-
termined from the RPC fault codes as detailed in Table 8.2.4-1 and an
unsuccessful Response is sent to the Delete primitive with status code
“Delete execInstance - cancellation failed”.

• If the addressed <execInstance> sub-resource has RUNNING execStatus
and resulted non-cancellable TR-069 [4] RPCs (e.g. RPCs other than

69

File Upload and File Download RPCs), the execResult attribute is set
to STATUS_NON_CANCELLABLE and an unsuccessful Response is
sent to the Update primitive with status code “Delete execInstance - not
cancellable”.

Table 60: Table 8.2.4-1: CancelTransfer Fault Code Mapping for
Delete <execInstance>

Fault code Description execResult Code
9000 Method not supported STATUS_REQUEST_UNSUPPORTED
9001 Request denied (no

reason specified)
STATUS_REQUEST
DENIED

9021 Cancellation of file
transfer not permitted
in current transfer state

STATUS_CANCELLATION_DENIED

8.3 Resource [myCertFileCred] primitive mappings
8.3.1 Introduction

This clause contains information regarding the procedures for establishing a
certificates presented by the managed entity in order for the peer to authenticate
the managed entity.

8.3.2 Creation of Resource [myCertFileCred]

8.3.2.1 Introduction The creation of a [myCertFileCred] resource requires
the use of the TR-069 Download RPC to establish the credential on the man-
aged entity. Once the managed entity has obtained the credential, the De-
vice.Security.Certificate.{i} instance’s SUIDs parameter is set from the [myCert-
FileCred] attribute using the TR-069 Set RPC.

8.3.2.2 Procedure for creation of Resource [myCertFileCred] The
Create Request and Response primitives for Resource [myCertFileCred] that
results in a download file transfer shall use the Download mechanism defined in
TR-069 [4]. The Download mechanism is an asynchronous command that consists
of the synchronous Download RPC for the Download and the asynchronous
TransferComplete RPC. The Download RPC returns a successful response or
one of the following fault codes in Table 8.3.2.2-1. A successful response means
that the CPE has accepted the Download RPC.

70

Table 61: Table 8.3.2.2-1: Download Fault Code Mapping

Fault code Description Response Status Code
9000 Method not supported 4000

(BAD_REQUEST)
9001 Request denied (no

reason specified)
4000
(BAD_REQUEST)

9002 Internal error 4000
(BAD_REQUEST)

9003 Invalid arguments 4000
(BAD_REQUEST)

9004 Resources exceeded
(when used in
association with
SetParameterValues,
this cannot be used to
indicate Parameters in
error)

4000
(BAD_REQUEST)

9010 File transfer failure
(associated with
Download,
ScheduleDownload,
TransferComplete or
AutonomousTransfer-
Complete methods).

4000
(BAD_REQUEST)

9012 File transfer server
authentication failure
(associated with Upload,
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

71

Fault code Description Response Status Code
9013 Unsupported protocol

for file transfer
(associated with Upload,
Download,
ScheduleDownload,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

Once the CPE has attempted to download the file, the CPE reports the result of
the download operation using the TransferComplete RPC. The TransferComplete
RPC indicates a successful operation or one of the following fault codes in Table
8.3.2.2-2.

Table 62: Table 8.3.2.2-2: TransferComplete Fault Code Mapping

Fault code Description Response Status Code
9001 Request denied (no

reason specified)
4000
(BAD_REQUEST)

9002 Internal error 4000
(BAD_REQUEST)

9010 File transfer failure
(associated with
Download,
ScheduleDownload,
TransferComplete or
AutonomousTransfer-
Complete methods).

4000
(BAD_REQUEST)

9011 Upload failure
(associated with Upload,
TransferComplete or
AutonomousTransfer-
Complete methods).

4000
(BAD_REQUEST)

72

Fault code Description Response Status Code
9012 File transfer server

authentication failure
(associated with Upload,
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

9014 File transfer failure:
unable to join multicast
group (associated with
Download,
TransferComplete or
AutonomousTransfer-
Complete methods).

4000
(BAD_REQUEST)

9015 File transfer failure:
unable to contact file
server (associated with
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

9016 File transfer failure:
unable to access file
(associated with
Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

73

Fault code Description Response Status Code
9017 File transfer failure:

unable to complete
download (associated
with Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

9018 File transfer failure: file
corrupted or otherwise
unusable (associated
with Download,
TransferComplete,
AutonomousTransfer-
Complete,
DUStateChangeCom-
plete, or
AutonomousDUState-
ChangeComplete
methods).

4000
(BAD_REQUEST)

9019 File transfer failure: file
authentication failure
(associated with
Download,
TransferComplete or
AutonomousTransfer-
Complete methods).

4000
(BAD_REQUEST)

9020 File transfer failure:
unable to complete
download within
specified time windows
(associated with
TransferComplete
method).

4000
(BAD_REQUEST)

Upon successful TransferComplete notification from the CPE, the newly created
Device.Security.Certificate.{i} object instance shall be assigned the values of the
SUIDs attribute using the procedure for updating parameters in clause 8.1.4.

74

9 Server Interactions
9.0 Introduction
This clause specifies how the IN-CSE interacts with an ACS in order to manage
the Resources described in the present document. The IN-CSE interaction with
an ACS includes:

• Establishment of the communication session between the IN-CSE and ACS
• Processing of requests and notifications between the IN-CSE and the ACS
• Discovery

NOTE: The Broadband Forum has not defined a protocol specifica-
tion for the Northbound Interface of an ACS. As such, the present
document only describes the expectations of this interface in the
form of requirements on the ACS.

9.1 Communication Session Establishment
9.1.1 IN-CSE to ACS Communication Session Establishment

When the IN-CSE detects that it has to delegate an interaction with a device
resource to an ACS, the IN-CSE establishes a communication session with
the ACS. The establishment of a communication session between the INCSE
and ACS provides security dimensions for Access control, Authentication, Non-
repudiation, Data confidentiality, Communication security, Data integrity and
Privacy adhering to the following TR-131 [7] Architectural requirement A7.

The IN-CSE may establish multiple sessions with an ACS based on the security
model utilized between the IN-CSE and the ACS.

9.1.2 ACS to IN-CSE Communication Session Establishment

When the ACS detects a change to resources it manages that the IN-CSE has
expressed interest, the ACS requests the IN-CSE to establish a session if a
session does not exist for the resource being managed. The establishment of a
communication session between the IN-CSE and ACS provides security dimen-
sions for Access control, Authentication, Non-repudiation, Data confidentiality,
Communication security, Data integrity and Privacy adhering to the following
TR-131 [7] Architectural requirement A7.

The ACS may establish multiple sessions with an IN-CSE based on the security
model utilized between the IN-CSE and the ACS.

While a session between the ACS and IN-CSE is not established, the ACS retains
any notifications or changes in the resources based on an Event retention policy
(i.e. time, number of events).

When an ACS to IN-CSE interaction is required and a session does not exist, the
ACS requests to initiate a session based on a Session Initiation Policy (i.e. Periodic

75

contact establishment (schedule), upon event detection with timeframe window).

9.1.3 ACS and IN-CSE Communication Session Requirements

When establishing a session from the ACS to the IN-CSE:

• If a session does not exist between the IN-CSE and ACS, the ACS shall
retain any notifications or changes in the resources based on an Event
retention policy (i.e. time, number of events).

• When an ACS to IN-CSE interaction is required and a session does not
exist, the ACS shall be capable to initiate a session based on a Session
Initiation Policy (i.e. Periodic contact establishment (schedule), upon event
detection with timeframe window).

9.2 Processing of Requests and Responses
9.2.1 Request and Notification Formatting

Requests and Notifications mechanisms between the IN-CSE and the DM Server
format the XML schema of the CPE methods defined in TR-069 [4] as an ACS
would format the CPE methods that it would pass to the CPE. The IN-CSE
would then also process the CPE methods as defined in TR-069 [4]. Likewise
the ACS would send notifications in the format of the XML schema of the CPE
for sending events using the Inform RPC.

9.2.2 ACS Request Processing Requirements

When receiving requests from the IN-CSE the ACS shall be capable of defining
mechanisms to support triggering of immediate operations to device. If the
device is not available the ACS returns an appropriate error code.

The ACS shall provide capability for the IN-CSE to indicate request policies to
include: Retry policy, Request Time out.

9.2.3 ACS Notification Processing Requirements

When sending notifications to the IN-CSE:

• The ACS shall be capable of providing a mechanism for the IN-CSE to
subscribe to events.

• The ACS shall be capable of providing a list of events for which the IN-CSE
can subscribe.

• The ACS shall be capable of providing a mechanism for the IN-CSE to
unsubscribe from events.

• The ACS shall be capable of providing an event delivery mechanism.
• The ACS shall be capable of providing the capability for the IN-CSE to

request event filters including: Event Code; Specific parameters changing
value; Device; Any combination of the previous criteria.

76

• The IN-CSE shall be capable of subscribing to be notified of changes to
resources it manages.

• The ACS shall be capable of notifying the IN-CSE of changes to resources
to which the client has subscribed.

9.3 Discovery and Synchronization of Resources
For devices under management, the IN-CSE may discover resources of interest
(metadata and values) within a device using the ACS.

For resources of interest, the IN-CSE may also express an interest to be notified
of a resource if a resource is changed (added, deleted, updated).

The IN-CSE shall be capable to discover and subscribe to changes of resources
in order to synchronize the IN-CSE with resources of interest of the ACS.

9.4 Access Management
9.4.0 Introduction

Once a request has performed an Access Decision by the IN-CSE to allow the
request, the IN-CSE shall select the appropriate ACS along with elements the
ACS would need to implement access management within the ACS. These would
include the Identity of the subject (oneM2M Originator) of the request which
is needed in scenarios where the original issuer of the request is needed to be
known - this could be done by correlating principals (e.g. Roles, Accounts) used
by the IN-CSE and ACS.

9.4.1 Access Management Requirements

• The ACS shall be capable of providing a mechanism for the IN-CSE to dis-
cover the Access Management elements used to authorize and authenticate
access to resources controlled by the ACS.

• The IN-CSE shall be capable of correlating Access Management elements
provided by the ACS to Access Management elements used by the IN-CSE.

• The IN-CSE shall be capable of providing secured storage of Access Man-
agement elements within the INCSE.

10 New Management Technology Specific Re-
sources
TR-181 [6] provides a list of management objects that have been standardized
by the Broadband Forum and where possible, clause 7 provides a mapping of
the Resources to standardized management objects. This clause provides the
oneM2M vendor specific extensions to the TR-181 [6] data model as specified in
the ts-0006-1-2-0.xml.

77

History
Publication history

Version Date Description

Draft history (to be removed on publication)

Version Date Description
V4.0.0 05 Jun 2019 Incorporated CR:

SDS-2019-0134R01-
CSE_AE_registration_data_model_changes(R3)

V4.0.1 10 Nov 2024 SDS-2024-0130-TS-
0006_initial_conversion_to_markdown

78

https://git.onem2m.org/specifications/ts/ts-0006/-/merge_requests/1
https://git.onem2m.org/specifications/ts/ts-0006/-/merge_requests/1

	Contents
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions of terms and abbreviations
	3.1 Terms
	3.2 Abbreviations

	4 Conventions
	5 Mapping of basic data types
	6 Mapping of identifiers
	6.0 Introduction
	6.1 Mapping of Device identifiers to the Node Resource
	6.2 Identifier of an object instance

	7 Mapping of resources
	7.0 Introduction
	7.1 General mapping assumptions
	7.1.0 Introduction
	7.1.1 Mapping of Device Identifiers
	7.1.2 Mapping of Embedded Devices

	7.2 Resource [deviceInfo]
	7.3 Resource [memory]
	7.4 Resource [battery]
	7.5 Resource [areaNwkInfo]
	7.6 Resource [areaNwkDeviceInfo]
	7.7 Resource [eventLog]
	7.8 Resource [deviceCapability]
	7.9 Resource [firmware]
	7.10 Resource [software]
	7.11 Resource [reboot]
	7.12 Resource [cmdhPolicy]
	7.12.0 Introduction
	7.12.1 Resource [activeCmdhPolicy]
	7.12.2 Resource [cmdhDefaults]
	7.12.3 Resource [cmdhDefEcValue]
	7.12.4 Resource [cmdhEcDefParamValues]
	7.12.5 Resource [cmdhLimits]
	7.12.6 Resource [cmdhNetworkAccessRules]
	7.12.7 Resource [cmdhNwAccessRule]
	7.12.8 Resource [cmdhBuffer]

	7.13 Resource Type <mgmtCmd>
	7.14 Resource Type <execInstance>
	7.15 Resource [registration]
	7.16 Resource [dataCollection]
	7.17 Security Solutions
	7.17.1 Introduction
	7.17.2 Resource [authenticationProfile]
	7.17.3 Resource [trustAnchorCred]
	7.17.4 Resource [myCertFileCred]
	7.17.5 Resource [MAFClientRegCfg]
	7.17.6 Resource [MEFClientRegCfg]

	8 Mapping of procedures for management
	8.0 Introduction
	8.1 Resource Type <mgmtObj> primitive mappings
	8.1.0 Introduction
	8.1.1 Alias-Based Addressing Mechanism
	8.1.2 Create primitive mapping
	8.1.3 Delete primitive mapping
	8.1.4 Update primitive mapping
	8.1.5 Retrieve primitive mapping
	8.1.6 Notify primitive mapping

	8.2 <mgmtCmd> and <execInstance> resource primitive mappings
	8.2.1 Update (Execute) primitive for the <mgmtCmd> resource
	8.2.2 Delete <mgmtCmd> resource primitive mapping
	8.2.3 Update (Cancel) <execInstance> primitive mapping
	8.2.4 Delete <execInstance> primitive mapping

	8.3 Resource [myCertFileCred] primitive mappings
	8.3.1 Introduction
	8.3.2 Creation of Resource [myCertFileCred]

	9 Server Interactions
	9.0 Introduction
	9.1 Communication Session Establishment
	9.1.1 IN-CSE to ACS Communication Session Establishment
	9.1.2 ACS to IN-CSE Communication Session Establishment
	9.1.3 ACS and IN-CSE Communication Session Requirements

	9.2 Processing of Requests and Responses
	9.2.1 Request and Notification Formatting
	9.2.2 ACS Request Processing Requirements
	9.2.3 ACS Notification Processing Requirements

	9.3 Discovery and Synchronization of Resources
	9.4 Access Management
	9.4.0 Introduction
	9.4.1 Access Management Requirements

	10 New Management Technology Specific Resources
	History

