
oneM2M
Technical Specification

oneM2M
Technical Specification

Document Number TS-0014-V4.0.1
Document Name: LWM2M Interworking
Date: 2024-11-09
Abstract: The present document specifies the

interworking capabilities of the M2M
Service Layer between ASN/IN/MN CSEs
and LWM2M Endpoints.

This Specification is provided for future development work within oneM2M only.
The Partners accept no liability for any use of this Specification.

The present document has not been subject to any approval process by the
oneM2M Partners Type 1. Published oneM2M specifications and reports for
implementation should be obtained via the oneM2M Partners’ Publications
Offices.

About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which
address the need for a common M2M Service Layer that can be readily embedded
within various hardware and software, and relied upon to connect the myriad of
devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

1

Copyright Notification

No part of this document may be reproduced, in an electronic retrieval system
or otherwise, except as authorized by written permission.

The copyright and the foregoing restriction extend to reproduction in all media.

(c) 2023, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI,
TTA, TTC).

All rights reserved.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals
who have the appropriate degree of experience to understand and interpret its
contents in accordance with generally accepted engineering or other professional
standards and applicable regulations. No recommendation as to products or
vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMA-
TION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS
TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND
FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR
AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO
oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT
OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS
DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT
SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES
ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PRO-
VIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Editors’s Note: Convert sequence diagrams to PlantUML

Contents
1 Scope
2 References

2.1 Normative references
2.2 Informative references

3 Definitions and abbreviations
3.1 Definitions
3.2 Abbreviations

4 Conventions
5 Architecture Model

5.1 Introduction
5.2 Reference Model

2

5.3 Types of Interworking
5.4 Composition of the Interworking Proxy Entity

6 Architecture Aspects
6.1 Introduction
6.2 LWM2M Device and Endpoint Lifecycle

6.2.1 Introduction
6.2.2 LWM2M Device and Endpoint Resource Representation

6.2.2.1 Introduction
6.2.2.2 LWM2M Device and Endpoint Resource Identification
6.2.2.3 LWM2M Endpoint Lifecycle

6.2.2.4 Configuration of CMDH Policies
6.2.2.5 Registering a Registered LWM2M Endpoint

6.3 LWM2M Object Discovery
6.3.1 Introduction
6.3.2 LWM2M Object Identifier Representation

6.3.2.1 Introduction
6.3.2.2 Void
6.3.2.3 LWM2M Object Lifecycle

6.4 LWM2M Object Transport and Interworking
6.4.1 Introduction
6.4.2 LWM2M Interworking Mechanisms

6.4.2.1 Introduction
6.4.2.2 Relevant Interworked Resource Settings
6.4.2.3 oneM2M RETRIEVE Procedure
6.4.2.4 oneM2M CREATE Procedure
6.4.2.5 oneM2M UPDATE Procedure
6.4.2.6 oneM2M DELETE Procedure

6.4.3 oneM2M Resource Operation Responses
6.5 LWM2M Object Subscription and Notification

6.5.1 Introduction
6.5.2 LWM2M Subscription Procedure
6.5.3 LWM2M Notification Procedure

6.6 LWM2M Object Security
6.6.1 Introduction
6.6.2 LWM2M Interworking Access Control Policy
6.6.3 IPE and Object Security provisioning

6.7 LWM2M IPE Administration and Maintenance
6.7.1 Introduction

6.7.2 Administration and Maintenance of the LWM2M Server Functionality
6.7.2.1 Introduction
6.7.2.2 LWM2M Server Maintenance

6.7.3 Maintenance of the LWM2M IPE AE Context
6.7.3.1 Introduction
6.7.3.2 LWM2M Endpoint List
6.7.3.3 Configuration of Interworking Functions

6.8 LWM2M Client Provisioning (Bootstrap)

3

7 Transparent Interworking Function
7.1 Introduction
7.2 Attribute Mapping for the <contentInstance> Resources

8 Semantically Enabled Interworking Function (Informative)
8.1 Introduction
8.2 Organization of Semantically Enabled Content Sharing Resources

8.2.1 Introduction
8.2.2 Lifecycle of Semantically Enabled Content Sharing Resources
8.2.3 Mapping for the Encoding of the <contentInstance> Resource

8.3 Guidelines for Mapping to the Base Ontology
8.3.1 Introduction
8.3.2 Mapping of the LWM2M Client
8.3.4 Mapping of the LWM2M Object, Object Instance. Resource and

Resource Instance
8.3.4.1 Introduction

9 oneM2M Management Object-based Interworking Function
9.1 Introduction
9.2 Translation of oneM2M Management Resource Types

9.2.1 Introduction
9.2.2 Translation to <mgmtObj> Resource Types

9.2.2.1 Mapping to <mgmtObj> Resource Types
9.2.2.2 Interworking of <mgmtObj> Resources
9.2.2.2.1 Introduction
9.2.2.2.2 Interworking of <mgmtObj> Resource Settings
9.2.2.2.3 Synchronization <mgmtObj> resources
9.2.2.3 Example of creating new specialized <mgmtObj> resources
9.2.2.4 LWM2M Interworking Procedure

9.2.2.5 Use of oneM2M attribute level subscription in LWM2M
Interworking
Annex A (Informative): Introduction to OMA LightweightM2M (LWM2M)

A.1 Introduction
A.2 Architecture
A.3 Terminology
A.4 Reference Points

A.4.1 Introduction
A.4.2 Functional Components

A.4.2.1 LWM2M Server
A.4.2.2 LWM2M Client

A.4.3 Interfaces
A.5 Protocols

A.5.1 Protocol Stack
A.5.2 Data Model
A.5.3 Interface Descriptions

A.5.3.1 Bootstrap
A.5.3.2 Client Registration
A.5.3.3 Device Management and Service Enablement

4

A.5.3.4 Information Reporting
A.6 Functions

History

1 Scope
The present document specifies the interworking capabilities of the M2M Service
Layer between ASN/IN/MN CSEs and LWM2M Endpoints using the architecture
identified in Annex F of oneM2M TS-0001 [2] for the following interworking
scenarios:

• Interworking for transparent transport of encoded LWM2M Objects and
commands in Content Sharing Resources between LWM2M Endpoints and
M2M Applications.

• Interworking with full mapping of LWM2M Objects in LWM2M Endpoints
to semantically enabled Content Sharing Resources that are utilized by
M2M Applications.

• Interworking with one-to-one mapping of LWM2M Objects with oneM2M
<mgmtObj> resources

NOTE: The present document limits Content Sharing Resources to
<container> and <contentInstance> resources.

2 References
2.1 Normative references
References are either specific (identified by date of publication and/or edition
number or version number) or nonspecific. For specific references, only the cited
version applies. For non-specific references, the latest version of the reference
document (including any amendments) applies.

The following referenced documents are necessary for the application of the
present document.

• [1] oneM2M TS-0011: “Common Terminology”.
• [2] oneM2M TS-0001: “Function Architecture”.
• [3] OMA-TS-LightweightM2M-V1_0-20150318-D: “Lightweight Machine

to Machine Technical Specification”.
• [4] oneM2M TS-0003: “Security Solutions”.
• [5] oneM2M TS-0005: “Management Enablement (OMA)”.
• [6] IETF RFC 3986: ” Uniform Resource Identifier (URI): Generic Syntax”.

2.2 Informative references
References are either specific (identified by date of publication and/or edition
number or version number) or nonspecific. For specific references, only the cited

5

version applies. For non-specific references, the latest version of the reference
document (including any amendments) applies.

The following referenced documents are not necessary for the application of the
present document but they assist the user with regard to a particular subject
area.

• [i.1] oneM2M Drafting Rules (http://member.onem2m.org/Static_pages
/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc

• [i.2] IETF RFC 7252: “Constrained Application Protocol (CoAP)”.
• [i.3] IETF RFC 6347: “Datagram Transport Layer Security Version 1.2”.
• [i.4] OMA OMA-RD-LightweightM2M-V1_0: “OMA Lightweight Machine

to Machine Requirement”.
• [i.5] oneM2M TS-0012: “Base Ontology”.

3 Definitions and abbreviations
3.1 Definitions
For the purposes of the present document, the terms and definitions given in
oneM2M TS-0011 [1], oneM2M TS0002 [2] apply. A term defined in the present
document takes precedence over the definition of the same term, if any, in
oneM2M TS-0011 [1] and oneM2M TS-0001 [2].

3.2 Abbreviations
For the purposes of the present document, the terms and definitions given in
oneM2M TS-0011 [1] and the following apply:

LWM2M Lightweight M2M
OMA Open Mobile Alliance

4 Conventions
The key words “Shall”, “Shall not”, “May”, “Need not”, “Should”, “Should not”
in this document are to be interpreted as described in the oneM2M Drafting
Rules [i.1].

5 Architecture Model
5.1 Introduction
The architecture model followed in the present document is based on the architec-
ture model in Annex F of oneM2M TS-0001 [2] that describes how interworking

6

http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc
http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc

between CSEs and non-oneM2M solutions and protocol using specialized Inter-
working Proxy application Entities (IPE). The present document describes the
LWM2M IPE that supports the following scenarios.

Figure 1: Figure 5.1-1: LWM2M Interworking Scenarios

In the scenarios depicted in Figure 5.1-1, the Hybrid and LWM2M Applications
represent applications that implement the LWM2M Client role defined in the
LWM2M Protocol [3].

5.2 Reference Model
The LWM2M Interworking reference model utilizes the Functional Architecture’s
reference model in oneM2M TS0001 [2]; augmenting the oneM2M TS-0001 [2]
reference model with capabilities provided by the LWM2M IPE.

Figure 2: Figure 5.2-1: LWM2M Reference Model

NOTE: The AE in the reference model could be registered with the

7

same CSE as the LWM2M IPE.

5.3 Types of Interworking
LWM2M IPEs provide the following types of interworking:

1. Interworking using the Content Sharing Resource for transparent transport
of encoded LWM2M Objects that are available to AEs as depicted in Figure
5.3-1.

2. Interworking with full mapping of the semantics of LWM2M Objects to
semantically enabled resources that are available to AEs as depicted in
Figure 5.3-2.

3. Interworking with one-to-one mapping of LWM2M Objects to oneM2M
<mgmtObj> resources as depicted in Figure 5.3-3.

While depicted outside the hosting CSE, the Content Sharing Resources are
hosted in a CSE (e.g. CSE1).

Figure 3: Figure 5.3-1: LWM2M Transparent Interworking Function

In Figure 5.3-1, the LWM2M Objects are provided by the LWM2M Application
to the LWM2M IPE using the LWM2M Protocol. The LWM2M IPE then
encapsulates the LWM2M Objects in Content Sharing Resources and then hosts
the Content Sharing Resources in a CSE using the Mca reference points for
use by AEs. The AE accesses the Content Sharing Resource from the CSE
that hosts the resource using the Mca reference point. Once the AE receives
the Content Sharing Resource, the AE extracts the LWM2M Object from the
Content Sharing Resource for the AE’s purpose. Clause 7 describes this type of
interworking in greater detail.

In Figure 5.3-2, the LWM2M Objects are provided by the LWM2M Application
to the LWM2M IPE using the LWM2M Protocol. The LWM2M IPE then
interworks the LWM2M Objects into Content Sharing Resources. The Content

8

Figure 4: Figure 5.3-2: LWM2M Semantically Enabled Interworking Function

Sharing Resources are based on the oneM2M defined Semantic Ontology. The
LWM2M IPE hosts the Content Sharing Resource in a CSE across the Mca
reference for use by other AEs. The AE accesses the Content Sharing Resource
from the CSE that hosts the resource using the Mca reference point. Once the
AE receives the Content Sharing Resource, the AE encodes the information
using the Semantic Ontology for the AE’s purpose. Clause 8 describes this type
of interworking in greater detail.

Figure 5: Figure 5.3-3: LWM2M Translation Interworking Function

In Figure 5.3-3, the IPE is provisioned with knowledge of the resource defini-
tion for a LWM2M Object and the corresponding oneM2M <mgmtObj> XSD,
which shall be generated as described in TS-0005 [5]. The XSD shall map each
LWM2M resource of a particular LWM2M Object ID to an [objectAttribute] in

9

the corresponding oneM2M <mgmtObj>. The ordering of the [objectAttribute]
in the XSD shall match the same order of resources defined in the corresponding
LWM2M Object. For a given LWM2M Object, the IPE shall create a correspond-
ing <mgmtObj> resource on the CSE and configure the mgmtSchema attribute
with a URI of the XSD file for that <mgmtObj>. All AEs can then access
the <mgmtObj> the same way they access other oneM2M resources. Clause 9
describes this type of interworking in more details.

An instance of a LWM2M IPE shall provide the capability for transparent
transport of encapsulated LWM2M Objects as Content Sharing Resources and/or
translation of LWM2M Objects as oneM2M semantically enabled Content Sharing
Resources or as mapped oneM2M <mgmtObj> resources.

5.4 Composition of the Interworking Proxy Entity
The LWM2M IPE participation in the LWM2M Protocol as described in clause 5
does so in the role of a LWM2M Server to which LWM2M Applications (LWM2M
Clients) interact. For each LWM2M Client (Endpoint) that is maintained by
the LWM2M Server in the LWM2M IPE, the LWM2M IPE shall instantiate and
maintains an instance of a Resource of type <AE>.

6 Architecture Aspects
6.1 Introduction
The LWM2M IPE participation in the LWM2M Protocol as described in clause
5 does so in the role of a LWM2M Server to which LWM2M Applications
(LWM2M Clients) interact. As a LWM2M Server, the IPE provides the following
Architecture Aspects based on the LWM2M Protocol Aspects described in clause
A.2:

• LWM2M Device and Endpoint Lifecycle (Client Registration).
• LWM2M Object Discovery (Client Registration, Device Management and

Service Enablement).
• LWM2M Object Transport and Interworking (Device Management and

Service Enablement).
• LWM2M Object Subscription and Notification (Information Reporting).
• LWM2M Interworking Proxy Entity Administration.
• LWM2M Client Provisioning (Bootstrap).
• LWM2M Object Security (Device Management and Service Enablement).

6.2 LWM2M Device and Endpoint Lifecycle
6.2.1 Introduction

As the LWM2M IPE discovers LWM2M Endpoints when the LWM2M IPE
interacts with the LWM2M Client over the LWM2M protocol’s Bootstrap and

10

Figure 6: Figure 5.4-1: LWM2M IPE Architecture

11

Client Registration interfaces, the LWM2M IPE shall maintain the associated
resources in the CSE that represents the LWM2M Device and Endpoint.

6.2.2 LWM2M Device and Endpoint Resource Representation

6.2.2.1 Introduction LWM2M Endpoint provides the management and con-
trol functions for an M2M Application on a device. As such, the CSE that
hosts the M2M Application shall represent the LWM2M Endpoint as a <AE>
resource (LWM2M Endpoint <AE> resource). The LWM2M Device that hosts
the LWM2M Endpoint shall be represented as a <node> resource.

6.2.2.2 LWM2M Device and Endpoint Resource Identification
LWM2M Endpoints are identified by their Endpoint Client Name described in
clause 6.2.1 of the LWM2M Technical Specification [3]. The Endpoint Client
Name URN without the “urn:” sequence is used as the AE-ID of the associated
<AE> resource that represents the LWM2M Client.

In most deployment scenarios, LWM2M Devices host one (1) LWM2M Endpoint.
In this scenario the LWM2M Device’s <node> resource’s M2M-Node-ID should
be the same as the LWM2M Endpoint Client Name URN without the “urn:”
sequence. When a LWM2M Device host’s more than one (>1) LWM2M Endpoint,
the determination of the <node> resource’s M2M-Node-ID is implementation
specific. In all deployment scenarios, the <AE> resource is linked with the
<node> resource as described in oneM2M TS-0001 [2].

As the LWM2M Endpoint is represented as an <AE> resource and a LWM2M
Object is represented as a Content Sharing Resource in the M2M Service Layer,
a reference shall be made between the <AE> resource that represents the
LWM2M Endpoint and the Content Sharing Resources which represents the list
of LWM2M Objects and Object Instances available in that LWM2M Client.

In order to identify interworked entities hosted in a CSE for the LWM2M tech-
nology described in this present document, the <AE> resource that represents
the LWM2M Endpoint and the Content Sharing Resources which represent the
list of LWM2M Objects and Object Instances available in that LWM2M Client,
shall have a Iwked_Technology labels attribute set to LWM2M.

For the case where a LWM2M Endpoint is represented as an <AE> resource
and LWM2M Objects are represented as <mgmtObj> resources in the M2M
Service Layer, each <mgmtObj> resource shall be a child of the <node> resource
representing the LWM2M Device that hosts the LWM2M Endpoint. In this
case, the nodeLink attribute of the <AE> resource representing the LWM2M
Endpoint shall reference the <node> resource representing the LWM2M Device.

In addition the <AE> resource uses the Hierarchical and Non-Hierarchical
mechanisms for Resource Addressing as defined in clause 9.3.1 of oneM2M TS-
0001 [2] where the resourceName attribute of the <AE> resource shall be a
Endpoint Client Name URN without the “urn:” sequence.

12

6.2.2.3 LWM2M Endpoint Lifecycle LWM2M Endpoint’s are discovered
when the LWM2M Client is successfully registers with the LWM2M Server using
the LWM2M Register operation. In addition to the LWM2M Register operation,
the LWM2M Client can periodically refresh the LWM2M Client’s registration
with the LWM2M IPE using the LWM2M Update operation. Finally a LWM2M
Client can deregister when the LWM2M Client issues a De-register operation to
the LWM2M IPE or the LWM2M Client’s registration lifetime expires.

The LWM2M Client Registration interface’s operations and the registration
lifetime expiration event maps to the following operations on the <AE> and
<node> resources.

Table 2: Table 6.2.2.3-1: LWM2M Endpoint Lifecycle Translation -
Client Registration Interface

LWM2M Operation
Client Registration Interface oneM2M Resource and Operation
Register create <AE>, create <Node>
Update update <AE>, update <Node>
De-register delete <AE>, delete <Node>

Table 3: Table 6.2.2.3-2: LWM2M Endpoint Lifecycle Translation -
LWM2M Server Events

LWM2M Server Events oneM2M Resource and Operation
client lifetime expiration delete <AE>, delete <Node>, delete

<container> resources associated with
the <AE> resource, delete
<mgmtObj> resources associated with
<node> resource.

Table 4: Table 6.2.2.3-3: LWM2M Endpoint Lifecycle Attribute
Translation

LWM2M Attributes
Client Registration Interface oneM2M Resource Attribute
Endpoint Client Name <AE>: AE-ID, resourceName

<Node>: M2M-Node-ID when the
Device only supports one Endpoint;
resourceName

Lifetime <AE>, <Node>: expirationTime

13

LWM2M Attributes
Client Registration Interface oneM2M Resource Attribute
LWM2M Version <AE>, <Node>: labels. Value is

“Iwked-Entity-Version:”appended with
the value of the LWM2M Version.

Binding Mode Not Applicable
SMS Number Not Applicable

Table 5: Table 6.2.2.3-4: LWM2M Endpoint Lifecycle Response
Code Translation

LWM2M Errors
Client Registration Interface

oneM2M Resource Operation
Response

Register
2.01 Created:
4.00 Bad Request
4.03 Forbidden

create <AE>, create <Node>
2001 Created
All other codes
4105 Conflict

Update
2.04 Changed
4.00 Bad Request
4.04 Not Found

update <AE>, update <Node>
2004 Changed
All other codes
4000 Not Found

De-register
2.02 Deleted
4.04 Not Found

delete <AE>, delete <Node>
2002 Deleted
4004 Not Found

6.2.2.4 Configuration of CMDH Policies In the present document, the
CMDH Policies associated with the <Node> resource for the AE is implementa-
tion specific.

6.2.2.5 Registering a Registered LWM2M Endpoint In the scenario
where a LWM2M Client issues a Register operation for an AE that is already
created, the LWM2M IPE shall treat the operation as if the LWM2M Client
requested a De-Register (Delete <AE> resource) prior this Register operation
(Create <AE> resource) as described in Table 6.2.2.3-1. The procedure for the
LWM2M Server is defined in clause 5.3.1 of the LWM2M Technical Specification
[3].

6.3 LWM2M Object Discovery
6.3.1 Introduction

The LWM2M Client uses the Registration Interface to provide the properties
required by the LWM2M Server of the IPE to contact the LWM2M Client

14

(e.g. Endpoint Name) and to maintain the session between these two LWM2M
entities (e.g. Lifetime, Queue Mode).In addition, the LWM2M Client also provides
the knowledge of the supported Objects and existing Object Instances across
the Registration Interface.

The LWM2M IPE uses the information exchange across this interface to synchro-
nize which LWM2M Objects supported by the LWM2M Endpoint and what is
defined in the hosting CSE for the M2M Application representing the LWM2M
Endpoint. This clause specifies how discovered LWM2M Objects identifiers are
translated to discoverable oneM2M resources along with the associated linkages
to other oneM2M resources.

6.3.2 LWM2M Object Identifier Representation

6.3.2.1 Introduction Through the Registration Interface, the LWM2M Client
provides the list of supported LWM2M Objects and existing LWM2M Object
Instances. Each element of the list is described by its path, which can be the
path of an Object or an Object Instance.

For example the LWM2M Client could provide the following list of paths:
</1/0>, </1/1>, </2/0>, </2/1>, </3/0>, </4/0>, </5>. This list of
paths is a valid list of LWM2M Objects and LWM2M Object Instances in the
CoRE Link Format [RFC6690], specifying that LWM2M Objects with OMNA
Identifiers 1, 2, 3,4, and 5 are supported. The respective OMNA references
are : urn:oma:lwm2m:oma:1, urn:oma:lwm2m:oma:2, urn:oma:lwm2m:oma:3,
urn:oma:lwm2m:oma:4, urn:oma:lwm2m:oma:5.

Additionally, information is provided that LWM2M Object 1 (Server Object) and
LWM2M Object 2 (Access Control Object) have 2 instances (Instance Identifiers
0 and 1); LWM2M Object 3 (Device Object) and LWM2M Object 4 (Connectivity
Monitoring Object) have 1 instance each (0); LWM2M Object 5 is supported
but no instance has been created yet for that LWM2M Object.

Optionally other information can be carried by that list as the capability for all
the Objects in the LWM2M Client to support:

• an alternate root path (default root path is ‘/’);
• a specific Content-Format (e.g. LWM2M JSON Content-Format).

For discovery of LWM2M Objects by M2M Applications, the properties carried
by LWM2M Objects list (i.e. technology, Objects and LWM2M Object Instances
Identifiers, optional alternate rootpath, supported Content-Format) shall be
translated into the labels attribute of the Content Sharing Resource as separate
entries with the following format:

• Iwked-Technology:LWM2M
• Iwked-Entity-Type:Resource Type
• LWM2M-PATH:Resource Root Path (for LWM2M default rootpath is “/”).
• Iwked-Entity-ID:Resource Path Object Identifier and Instance Identifier.

15

• Iwked-Content-Type: Supported Content Format (LWM2M default Sup-
ported ContentFormat is LWM2M TLV other can be LWM2M JSON).

For the case where LWM2M Objects are represented as <mgmtObj> resources
in the M2M Service Layer, the properties carried by the LWM2M Objects list
shall be translated into the labels attribute of the <node> resource using the
above format.

For example if the LWM2M Endpoint provided the following LWM2M Objects as
part of the Client Registration Interface: </lwm2m>;rt=“oma.lwm2m”;ct=LWM2M+JSON,</1/0>
would translate into a <container> resource with the following en-
tries in the labels attribute: Iwked-Technology:LWM2M Iwked-Entity-
Type:“urn:oma:lwm2m:oma:1” LWM2MPTH:“/lwm2m” Iwked-Entity-ID:
“/1/0” Iwked-Content-Type:LWM2M+JSON (see note).

NOTE: LWM2M+JSON is an entry (numerical ID) in the CoAP
Content-Format Registry representing the media-type “applica-
tion/vnd.oma.lwm2m+json” used in LWM2M TS 1.0 enabler and
currently engaged in the IANA registration process.

The CoAP Resource Type may also be used as the semantic ontology of the
<container> resource by inserting this value in the ontologyRef attribute of the
<container> or other translated oneM2M resource.

For the case where LWM2M Objects are represented as <mgmtObj> resources
in the M2M Service Layer, the IPE shall use information carried in the LWM2M
Objects list to configure not only the labels and description attributes but
also the objectID and objectPath attributes of the <mgmtObj> resources since
objectID and objectPath can also be helpful for discovery of the supported
LWM2M Objects. For the case that 1:1 mapping of LWM2M Object to oneM2M
<mgmtObj> is desired, the objectIDs attribute shall contain the URN of the
corresponding LWM2M Object and the mgmtSchema attribute shall contain a
URI of the schema file for the new <mgmtObj> specialization as outlined in
Clause 6.7 of TS-0005 [4].

LWM2M Object Resources are identified by their URI within the context of
the LWM2M Endpoint described in clause 6.2.1 of the LWM2M Technical
Specification [3].

As the LWM2M Endpoint is represented as an <AE> resource and a LWM2M
Object is represented as a oneM2M resource in the M2M Service Layer, a reference
shall be made between the <AE> resource that represents the LWM2M Endpoint
and the oneM2M resource which represent the list of LWM2M Objects and Object
Instances available in the LWM2M Client.

For the case where a LWM2M Object is represented as a <mgmtObj> resource,
this reference is already provided by the AE’s nodeLink attribute.

In addition, oneM2M resources that represents the LWM2M Object or LWM2M
Object Instance uses the Hierarchical and Non-Hierarchical mechanisms for

16

Resource Addressing as defined in clause 9.3.1 of oneM2M TS0001 [2] where
the resourceName attribute of the Content Sharing or oneM2M resource shall
be the value of the LWM2MURI. All characters that are not in the unreserved
character set defined in clause 2.3 of the of IETF RFC 3986 [6] shall be percent
encoded as defined in clause 2.1 of the same IETF RFC, specifically the forward
slash (/) character.

For example if the LWM2MURI is “/1/0 and the LWM2MPTH is”/” then the
resourceName attribute of the oneM2M resource could be “%2F1%2F0”.

For the case where <mgmtObj> resources are used, the “/1/0” LWM2MURI is
mapped to the <mgmtObj>’s objectPath attribute. All characters that are not
in the unreserved character set shall be percent encoded as well.

6.3.2.2 Void

6.3.2.3 LWM2M Object Lifecycle LWM2M Endpoint’s are discovered when
the LWM2M Client is successfully registers with the LWM2M Server using the
LWM2M Register operation. In addition to the LWM2M Register operation,
the LWM2M Client can periodically refresh the LWM2M Client’s registration
with the LWM2M IPE using the LWM2M Update operation. Finally a LWM2M
Client can deregister when the LWM2M Client issues a De-register operation to
the LWM2M IPE or the LWM2M Client’s registration lifetime expires.

The LWM2M Client Registration interface’s operations and the registration
lifetime expiration event maps to the following operations on the resource.

Table 6: Table 6.3.2.3-1: LWM2M Object Lifecycle Translation -
Client Registration Interface

LWM2M Operation
Client Registration Interface oneM2M Resource and Operation
Register create <container>, oneM2M resource
Update update <container> , delete

<container>, oneM2M resource
De-register delete <container>, oneM2M resource

Table 7: Table 6.3.2.3-2: LWM2M Object Lifecycle Translation -
LWM2M Server Events

LWM2M Server Events oneM2M Resource and Operation
Client lifetime expiration delete <container>, oneM2M resource

17

Table 8: Table 6.3.2.3-3: LWM2M Object Lifecycle Attribute Trans-
lation

LWM2M Attributes
Client Registration Interface oneM2M Resource Attribute
Endpoint Client Name Not Applicable
Resource Links <container>, oneM2M resource

resourceName
Lifetime <container> , oneM2M resource

expirationTime
LWM2M Version Not Applicable
Binding Mode Not Applicable
SMS Number Not Applicable

Table 9: Table 6.2.2.3-4: LWM2M Object Lifecycle Response Code
Translation

LWM2M Errors
Client Registration Interface

oneM2M Resource Operation
Response

Register
2.01 Created:
4.00 Bad Request
4.03 Forbidden

create <container>
2001 Created
All other codes
4105 Conflict

Update
2.04 Changed
4.00 Bad Request
4.04 Not Found

update <container>
2004 Changed
All other codes
4000 Not Found

De-register
2.02 Deleted
4.04 Not Found

delete <container>
2002 Deleted
4004 Not Found

6.4 LWM2M Object Transport and Interworking
6.4.1 Introduction

When an oneM2M request is addressed from a CSE/AE to a hosting CSE
containing the representation of a LWM2M Client, the oneM2M response to
the Originator of the request is returned through the cooperation of the hosting
CSE and the IPE.

The LWM2M Client uses the Device Management & Service Enablement interface
to provide the capabilities for the LWM2M Server of the IPE to access LWM2M
Objects, Objects Instances and Resources available from the LWM2M Client.

A hosting CSE maintains a representation of the LWM2M Data Model of LWM2M
Object, Object Instance or Resources as instances of oneM2M resource types.

18

These Content Sharing Resources are instantiated and registered as described
in clause 6.3 allowing oneM2M AEs and CSEs to exchange data with LWM2M
Clients.

In reference to clause 6.3, at the end of the registration phase all declared
LWM2M Object Instances and LWM2M Objects are associated to a Content
Sharing Resource created with the resourceName attribute set accordingly to
the proper LWM2M Object Instance path (e.g. /9/1) or to the LWM2M Object
path (e.g. /9).

6.4.2 LWM2M Interworking Mechanisms

6.4.2.1 Introduction Cooperation between IPE and the oneM2M hosting
CSE requires efficient mechanisms to maintain the latest state of the targeted
LWM2M Objects, Object Instances and Resources. These mechanisms include
data synchronization between the IPE and hosting CSE.

Data synchronization relies on the oneM2M Subscription/Notification and
LWM2M Observation/Notification mechanisms. For automated data synchro-
nization between the IPE and hosting CSE to be achieved, the solution shall
be granular enough to allow data synchronization for each LWM2M Object
Instance.

Access Control mechanisms relies on an interworking between oneM2M and
LWM2M Access Control Policies.

LWM2M and oneM2M mechanisms used to achieve Data Synchronization and
Access Control is specified in more details in clauses 6.5 and 6.6.

These following sub-clauses specify the sequences of operations involved for each
type of supported oneM2M requests following the general procedures specified
in clause 10 (CREATE,RETRIEVE, DELETE) as used within the context of
the interworking for the present document

6.4.2.2 Relevant Interworked Resource Settings A LWM2M Object
Instance that is represented in oneM2M as a <container> resource has 2 direct
children resource types: a <subscription> resource and a <contentInstance>
resource when used with a <container> resource.

A LWM2M Object Instance that is represented in oneM2M as a <mgmtObj>
resource may have 1 direct child resource of type <subscription>.

For supporting the LWM2M interworking process, a few attributes for the
<container> resource and the <subscription> resource shall have a specified set
of parameters.

a) Attributes of <container> resource

19

Table 10: Table 6.4.2.2-1: <container> resource - Relevant Inter-
worked Attributes

Attributes of <container> resource Value
accessControlPolicyIDs ACP set (see Clause 6.6)
maxNrOfInstances 1

b) Child resource types of <container> resource

Table 11: Table 6.4.2.2-2: <container> resource - Relevant Child
resource types

Child resources of <container> resource
<contentInstance> resource
<subscription> resource

c) Attributes of <subscription> resource

Table 12: Table 6.4.2.2-3: <subscription> resource - Relevant
Interworked Attributes

Attributes of <subscription>
resource Description / Value
notificationURI IPE URI
eventType B. Deletion of the subscribed-to resource;

C. Creation of a direct child of the
subscribed-to resource;
E. An attempt to retrieve a
<contentInstance> direct-child-resource of a
subscribed-to <container> resource is
performed while this child is an obsolete
resource or the reference used for retrieving
this resource is not assigned.This retrieval is
performed by a RETRIEVE request
targeting the subscribed-to resource with
the Result Content parameter set to either
“child-resources” or
“attributes+child-resources”.

6.4.2.3 oneM2M RETRIEVE Procedure This procedure describes the
retrieval of a resource using the oneM2M RETRIEVE request. The information
contained within the resource is related to the LWM2M Objects Instances that
are interworked through the IPE. This clause shall be treated in conformance

20

with the RETRIEVE Procedure specified in oneM2M TS-0001 [2], clauses 10.1.2
and 10.2.4.2.

The Receiver performs local processing to verify the existence of requested Re-
source and checks privileges for retrieving the information related to the resource.
After successful verification, the Receiver shall return the requested information
according to the procedures for the type of interworking (e.g. Transparent, Se-
mantically Enabled, or Management Objects) as described in clause 7, 8, and 9,
otherwise an error response shall be returned to the Originator.

Figure 7: Figure 6.4.2.3-1: Procedure for Retrieving a Resource (oneM2M TS-
0001 [2], clause 10)

The target of the request is a <container> or <mgmtObj> resource, the Re-
sultContent and FilterCriteria parameters of the request (oneM2M TS0001 [2],
clause 8.1.2) specify the nature of the information to retrieve.

Table 13: Table 6.4.2.3-1: Effect of Request Parameters on Retrieval
Request

Request parameter :
ResultContent

Request parameter :
FilterCriteria Effect

child-resources resourceType =
contentInstance

Retrieval of LWM2M
Object Instance

attributes (default) labels, attribute Metadata retrieval of
LWM2M Object
Instance.

21

Specific steps of the Receiver Processing according to the interworking process
shall be followed:

Step 001: Find and verify the targeted <container> or <mgmtObj> resource
of the request : the resourceName corresponds to clause 6.3.2.

Step 002: Using the Hosting CSE Access Control mechanisms, check for Access
Control Policy attached to the <container> or <mgmtObj> resource of the
request

Step 003: On successful validation of the Access Control Policy, proceed to
fetch the requested information:

a) If “ResultContent” is “attributes”, jump to Step 4.

b) If “ResultContent” is “child-resources” and “FilterCriteria” is “contentIn-
stance”, the associated <contenInstance> resource of the targeted container
is considered.

• Step 003.1: if the <contentInstance> resource is obsolete or its reference is
not assigned, an event for Retrieval attempt (eventType ‘E’) is triggered to
the Entity that subscribed to the event (i.e. IPE); as a Blocking Procedure,
the Hosting CSE shall monitor the arrival of the new data or decide to
report a timeout error in jumping to Step 004:

– Step 003.1.1: On receiving the event of type ‘E’ (eventType ‘E’)
the IPE performs a LWM2M READ request on the Object Instance
of the targeted LWM2M Client.

∗ Step 003.1.2: Once the targeted Object Instance is available to
IPE, the IPE creates and populates with that data the <contentIn-
stance> child-resource of the requested <container> resource.

• Step 003.2: the up-to-date information is available in the <contentIn-
stance> resource.

Step 004: The Hosting CSE returns the appropriate response back to the
Originator (e.g. Errors, or Data).

NOTE: As an OBSERVATION has been set up on the targeted
LWM2M Object Instance, the automatic synchronization between
the Object Instance and its representation in the Hosting CSE is
performed. Further oneM2M accesses to the resource should be
simplified in minimizing impact of Step003 (up-to-date data already
present from the Hosting CSE resources).

General Exceptions:

1. The targeted resource/attribute in To parameter does not exist. The
Receiver shall respond with an error.

2. The Originator does not have privileges to retrieve information stored in
the resource on the Receiver. The Receiver shall respond with an error.

3. A timer has expired. The Receiver shall respond with an error.

22

6.4.2.4 oneM2M CREATE Procedure This procedure describes the update
of a LWM2M Object Instance in a LWM2M Client using the oneM2M CREATE
request The information contained in the request via the Content parameter
(oneM2M TS-0001 [2], clause 8.2.1) will be used to update an Object Instance
in the LWM2M context.

This clause shall be treated in conformance with the CREATE Procedure specified
in oneM2M TS-0001 [2], clauses 10.1.2 and 10.2.4.1.

Figure 8: Figure 6.4.2.4-1: Procedure for Creating a Resource (oneM2M TS-0001
[2], clause 10)

The target of the request is a <container> or <node> resource, the ResourceType
parameters of the request (oneM2M TS-0001 [2], clause 8.1.2) specifies the type
of the resource to create.

Table 14: Table 6.4.2.4-1: Effect of Request Parameters on Create
Request

Request parameter :ResourceType Effect
ContentInstance Replacement of the <latest> resource

by a new one
MgmtObj Creation of new <mgmtObj> resource

or appropriate error message if one
already exist

In LWM2M Interworking context, if there is already an existing <contentIn-
stance> resource, creating a new one shall violates the policy defined in the

23

parent <container> resource regarding the maxNrOfInstances which shall be
set to 1. Then the oldest <contentInstance> resources shall be removed from
the <container> to enable the creation of the new <contentInstance> resource.

In any case, a notification is sent to the IPE, which subscribed to the parent
<container> or <node> resource with the eventType ‘C’ (Creation of a direct
child of the subscribed-to resource). The IPE shall use that notification to update
the LWM2M resource model with the new data received (“Content” parameter
of the request).

Specific steps of the Receiver Processing according to the interworking process
shall be as followed:

Step 001: Find and verify the <container> or <node> resource of the request
: the resourceName corresponds to clause 6.3.2.

Step 002: Using the Hosting CSE Access Control mechanisms, check for Access
Control Policy attached to the <container> or <node> resource of the request.

Step 003: On unsuccessful validation of the Access Control Policy, jump to
step 4:

• Step 003.1: When according to the request, a <contentInstance> or
<mgmtObj> resource is created, an event for Child Creation (eventType
‘C’) is triggered to the Entity that subscribed to that event (i.e. IPE).

• Step 003.2: On receiving the event of type ‘C’ the IPE - via the Mca
reference point - get the data from the created <contentInstance> or
<mgmtObj> resource and propagates the updated data to the related
Object Instance in the LWM2M Client.

Step 004: The Hosting CSE returns the appropriate response back to the
Originator (e.g. Acknowledgment, Errors).

General Exceptions:

1. The Originator does not have the privileges to create a resource on the
Receiver, the Receiver shall respond with an error.

2. The resource with the specified name (if provided) already exists at the
Receiver, the Receiver shall response with an error.

3. The provided information in Content is not accepted by the Receiver
(e.g. missing mandatory parameter), the Receiver shall respond with an
error.

6.4.2.5 oneM2M UPDATE Procedure This procedure describes the update
of a LWM2M Object Instance or Resource in a LWM2M Client using the oneM2M
UPDATE request. The information contained in the request via the Content
parameter (TS-0001 Clause 8.1.2) shall be used to update an Object Instance or
Resource in the LWM2M context.

24

This clause shall be treated in conformance with the UPDATE Procedure
specified in TS-0001 [2] clause 10.1.3 and 10.2.8.4.

Figure 9: Figure 6.4.2.5-1: Procedure for UPDATing a Resource (TS-0001 Clause
10)

The target of the request is the <mgmtObj> resource itself.

Specific steps of the Receiver Processing according to the interworking process
shall be as followed:

Step 001: Find and verify the <mgmtObj> resource of the request : the
resourceName corresponds to clause 6.3.2

Step 002: Using the Hosting CSE Access Control mechanisms, check for Access
Control Policy attached to the <mgmtObj> resource of the request.

Step 003: On unsuccessful validation of the Access Control Policy, jump to
step 4

Step 003.1: When according to the request, a <mgmtObj> attribute is updated,
an event for update to attributes (eventType ‘A’) is triggered to the Entity that
subscribed to that event (i.e. IPE).

Step 003.2 : On receiving the event of type ‘A’, the IPE - via the Mca reference
point - gets the data from the attribute and propagates the updated data to the
related Object Instance or Resource in the LWM2M Client.

Step 004: The Hosting CSE returns the appropriate response back to the
Originator (e.g. Acknowledgment, Errors)

General Exceptions:

25

1. The targeted resource in To parameter does not exist. The Receiver
responds with an error.

2. The Originator does not have the privilege to modify the resource, create
attributes or delete attributes on the Receiver. The Receiver responds
with error.

3. The provided information in the Content is not accepted by the Receiver.
The Receiver responds with error.

6.4.2.6 oneM2M DELETE Procedure This procedure describes the re-
moval of a LWM2M Object Instance within a LWM2M Client using the oneM2M
DELETE request.

This clause shall be treated in conformance with the DELETE Procedure specified
in oneM2M TS-0001 [2], clauses 10.1.4 and 10.2.4.4.

Figure 10: Figure 6.4.2.6-1: Procedure for Deleting a resource (oneM2M TS-0001
[2], clause 10)

Specific steps of the Receiver Processing according to the interworking process
shall be as followed:

Step 001: Find and verify the <container> or <mgmtObj> resource of the
request : the resourceName corresponds to clause 6.3.2.

Step 002: Using the Hosting CSE Access Control mechanisms, check for Access
Control Policy attached to the <container> or <mgmtObj> resource of the
request.

Step 003: On unsuccessful validation of the Access Control Policy, jump to
step 4:

26

• Step 003.1: When the <container> or <mgmtObj> resource is deleted
an event (eventType ‘B’: Deletion of subscribed-to resource) is triggered
to the Entity that subscribed to that event (i.e. IPE).

• Step 003.2: On receiving the event type ‘B’, the IPE requests the LWM2M
Client to delete the Object Instance related to the <container> or <mgm-
tObj> resource.

• Step 003.3: On Object Instance deletion, the LWM2M Client performs a
De-Registration operation to the IPE.

• Step 003.4: Via the Mca reference point, the IPE communicates to the
Hosting CSE the status of this DeRegistration.

Step 004: The Hosting CSE returns the appropriate response back to the
Originator (e.g. Success, Errors).

6.4.3 oneM2M Resource Operation Responses

Table 15: Table 6.4.3-1: LWM2M Response Codes to oneM2M
Resource Operation Response Codes

LWM2M Client
Response Codes on
Device Management & Service
Enablement interface

oneM2M Resource Operation
Response

Create
2.01 Created:
4.00 Bad Request
4.01 Unauthorized
4.04 Not Found

2001 Created
4000
4103
4004

Read
2.05 Content:
4.01 Unauthorized
4.04 Not Found
4.05 Method Not Allowed

2000 OK
4103
4004
4005

Write
2.04 Changed
4.00 Bad Request
4.01 Unauthorized
4.04 Not Found
4.05 Method Not Allowed

2004 Changed
4000
4103
4004
4005
4102

27

Delete
2.02 Deleted
4.00 Bad Request
4.01 Unauthorized
4.04 Not Found
4.05 Method Not Allowed

2002 deleted
4103
4103
4004
4005

6.5 LWM2M Object Subscription and Notification
6.5.1 Introduction

The LWM2M Server uses the Information Reporting Interface to provide the
capabilities for a LWM2M Server to subscribe to changes to the LWM2M Ob-
jects, LWM2M Object instances and the associated LWM2M Object’s resources.
Likewise the LWM2M Client uses the Information Reporting Interface to notify
subscribed LWM2M Server’s when the LWM2M Object, LWM2M Object in-
stance and/or LWM2M Object’s resources change and to cancel the subscription
on LWM2M Objects, LWM2M Object instances and the associated LWM2M
Object’s resources.

The LWM2M Server uses the Device Management & Service Enablement Interface
to set the notification criteria for a subscription.

The oneM2M Subscription capabilities permit subscription changes to an
oneM2M resource’s attributes and its direct child resources. Likewise, the
oneM2M Notification capabilities include a rich set of criteria for when a
subscribed-to oneM2M resource is notified of a change.

6.5.2 LWM2M Subscription Procedure

The LWM2M IPE interworks the oneM2M resource’s <subscription> child
resource with the corresponding LWM2M Object using the oneM2M <subscrip-
tion> resource’s attributes and the corresponding LWM2M Object resource’s
Notification class Attributes.

Note: Each LWM2M Object resource has an associated set of No-
tification class Attributes that are used for defining the applicable
subscription and notification criteria.

When the LWM2M IPE creates a oneM2M Content Sharing Resource, the
LWM2M IPE creates a subscription on the Content Sharing Resource to be
notified whenever the oneM2M resource’s subscription attribute is changed by
setting the <subscription> resource’s attributes as follows.

28

Table 16: Table 6.5.2-1: LWM2M Subscription Procedure - <sub-
scription> resource

Attributes of <subscription> Description
accessControlPolicyIDs Link a <accessControlPolicy>

resource with the privileges:
accessControlOriginator originatorID
set to the LWM2M IPE AE’s AE-ID
accessControlOperations: Set to
RETRIEVE, CREATE, UPDATE,
DELETE, DISCOVER, NOTIFY

pendingNotification Set to “sendLatest”
latestNotify Set to “latest”.
notificationContentType Set to “resource”
<schedule> Set to immediate notification

Whenever another AE or CSE creates or deletes a subscription to the <container>
resource, the LWM2M IPE shall be notified of the change and shall perform the
following steps:

Step 001: Find the associated LWM2M Object or Object Instance for notifica-
tion’s subscriptionReference.

Step 002: If the oneM2M notification indicates a subscription deletion:

• Step 002a: If the associated LWM2M Object or Object Instance has an
outstanding Observation request from the LWM2M IPE then issue the
LWM2M Cancel Observation operation.

Step 003: If the oneM2M notification indicates a subscription creation:

• Step 003a: If the associated LWM2M Object or Object Instance does not
have an outstanding Observation request from the LWM2M IPE then:

– Step 003a001: Retrieve the Parent resource of the <subscription>
resource from the notification’s subscriptionReference.

– Step 003a002: Determine the LWM2M Notification class Attributes
to set from the set of subscriptions of the Parent resource using the
<schedule> resource associated with each of the Parent resource’s
subscriptions.

– Step 003a003: Issue the LWM2M Observe operation with the
LWM2M Notification class attributes.

General Exceptions: The processing for recovery of a failed LWM2M Cancel
Observation or Observation operation is vendor specific.

29

Table 17: Table 6.5.2-2: LWM2M Subscription Procedure - Infor-
mation Reporting Interface

LWM2M Operation
Information Reporting Interface oneM2M Resource and Operation
Observe NOTIFY (m2m:notification

subscriptionDeletion=false)
Cancel Observation NOTIFY (m2m:notification

subscriptionDeletion=true)

Table 18: Table 6.5.2-3: LWM2M Subscription Procedure Attribute
Translation

LWM2M Operation
DM and SE Interface
Notification class Attributes oneM2M <subscription> Attribute
Minimum Period <schedule> resource
Maximum Period <schedule> resource
Greater Than Not Applicable
Less Than Not Applicable
Step Not Applicable

6.5.3 LWM2M Notification Procedure

When the LWM2M IPE is notified by the LWM2M Client of a change in a
LWM2M Object or Object Instance the LWM2M IPE creates a new <contentIn-
stance> for the associated <container> resource according to the procedures
for the type of interworking (e.g. Transparent, Semantic) as described in clause
7 or 8.

For the case where LWM2M Objects are represented as <mgmtObj> resources
in the M2M Service Layer and when the LWM2M IPE is notified by the LWM2M
Client of a change in a LWM2M Object or Object Instance, the LWM2M IPE
updates the corresponding <mgmtObj> resource according to the procedures
described in clause 9.

6.6 LWM2M Object Security
6.6.1 Introduction

OMA-LWM2M and oneM2M Access Control Policies shall collaborate in order
to assure the interworked resources are accessible according to the oneM2M Au-
thorisation Procedure specified in clause 11.3.4 (M2M Authorization Procedure)
of oneM2M TS-0001 [2] and clause 7 (Authorization) of oneM2M TS-0003 [5].

30

6.6.2 LWM2M Interworking Access Control Policy

The oneM2M Access Control Policy mechanisms specified in clause 7 of oneM2M
TS-0003 [5], shall be used to check and validate the parameters of a request
message against the ACPs (<accessControlPolicy> resources) which have been
assigned to the accessed resource.

In order to assure a proper LWM2M Interworking with oneM2M, the IPE shall
setup the hosting CSE by:

1. providing a mandatory set of <accessControlPolicy> (ACPs) resources
2. assigning a proper set of ACPs to the accessControlPolicyIDs attribute of

each <container> resource allocated during the CSE registration phase
(clause 6.3 LWM2M Object Discovery)

The process for provisioning the IPE in order to perform such a setup is described
in clause 6.6.3 “IPE and Object Security provisioning” of the present document.

In addition, the Access Control Policy mechanisms specified in clause 7 of
oneM2M TS-0003 [5] are fully applicable in this LWM2M interworking context.

6.6.3 IPE and Object Security provisioning

In order to provide oneM2M information specified in the clause 6.6.2 (set of
<accessControlPolicy> (ACPs) resources, assignment of accessControlPolicyIDs),
the LWM2M IPE shall be supplied by information such as:

• a list of oneM2M originators and their associated Access Control Rules
likely to be exercised on the Hosting CSE resources

• a list of oneM2M originators likely to contact the LWM2M Clients with
the associated set of authorized operations

In combining such an information with the Access Control Policy specified in a
given LWM2M Client (clause 6.8 LWM2M Client Provisioning) the LWM2M
IPE shall be able to provide to the Hosting CSE, the oneM2M Access Control
Policy materials needed for properly registering LWM2M Objects representation.
In the current release of this Specification, this procedure of how the Access
Control Policy materials are provided is implementation specific.

6.7 LWM2M IPE Administration and Maintenance
6.7.1 Introduction

The IPE described in clause 5.4 is comprised functionality that includes the
LWM2M Server and the IPE’s AE. This clause describes the administration and
maintenance of these functional elements.

31

6.7.2 Administration and Maintenance of the LWM2M Server Func-
tionality

6.7.2.1 Introduction The LWM2M IPE provides the functionality that plays
the role of the LWM2M Server in order to communicate with LWM2M Clients.

In order for communication to be established information needs to be provisioned
into the LWM2M Client and LWM2M Server where the following artefacts are
necessary to be established for the LWM2M Server:

• LWM2M Server and Client Credentials.
• LWM2M Access control lists.

In addition, the LWM2M Server maintains information about each LWM2M
Client and has actions that are used to maintain the LWM2M Server.

These aspects of the LWM2M Server are further described in clause E.2 of the
LWM2M Server resource [3].

The mechanisms used to administer and maintain the LWM2M Server function-
ality within the LWM2M IPE is out of scope of the present document.

6.7.2.2 LWM2M Server Maintenance The LWM2M Server maintains a
set of LWM2M Server account information for each LWM2M Client that allows
the LWM2M Server to access and communicate with LWM2M Client. These
are:

• LWM2M Server identifier associated with and assigned by the LWM2M
Client (LWM2M Server identifier, registration lifetime).

• Policies for default observation behavior.

The following actions can also be performed that affects the state of the LWM2M
Server’s interaction with the LWM2M Client:

• On-demand request for the LWM2M Client to update its registration.

6.7.3 Maintenance of the LWM2M IPE AE Context

6.7.3.1 Introduction The LWM2M IPE AE maintains information related
to the operational context of the LWM2M IPE AE. Specifically the following
elements are maintained for the LWM2M IPE AE:

• List of currently registered LWM2M Endpoints.
• Configuration of the Interworking Functions to be used for the LWM2M

Objects and Object Instances.

6.7.3.2 LWM2M Endpoint List Whenever an LWM2M Endpoint <AE>
resource is created, updated or deleted as described in clause 6.2, the LWM2M
IPE also manages the list of LWM2M Endpoint <AE> resources using a oneM2M
<group> resource.

32

The oneM2M <group> resource’s lifecycle is linked to the LWM2M IPE <AE>
resource’s lifecycle.

Table 19: Table 6.7.3.2-1: LWM2M IPE <AE> resource - Group
Lifecycle

LWM2M IPE <AE> resource
Operation oneM2M Resource and Operation
create create <group>. The group

resourceName is the AE-ID of the
LWM2M IPE <AE>.resource

update update <group>
delete delete <group>

The LWM2M Endpoint <AE> resources’ lifecycle operation maps to the following
operations on the oneM2M <group> resource.

Table 20: Table 6.7.3.2-2: LWM2M Endpoint <AE> resource -
Group member Lifecycle

LWM2M Endpoint <AE> resource
Operation oneM2M Resource and Operation
Create update <group> (add member)
Delete update <group> (delete member)

6.7.3.3 Configuration of Interworking Functions Clause 5.3 describes
the types of interworking functions as Transparent Interworking Function and
Semantically Enabled Interworking Function. An IPE provides the capability to
perform one or both types of interworking functions. The granularity (e.g. Ob-
ject/Object Instance, IPE) that is used to define which interworking function(s)
to use is implementation specific.

6.8 LWM2M Client Provisioning (Bootstrap)
This present document makes assumptions that the LWM2M Clients and
LWM2M Servers functionality of the IPE have been provisioned with the proper
LWM2M credential materials in accordance to the LWM2M specification (A.5.3.1.
Bootstrap) in order to securely communicate between the LWM2M Client and
LWM2M Server.

Additionally, a LWM2M Client connected to a LWM2M IPE, should be pro-
visioned with the LWM2M Access Control Policy information associated to
the Object Instances contained in the LWM2M Client as described in clause
6.6 LWM2M Object Security. Additionally, in current release of this present

33

document, the LWM2M Server role of the LWM2M IPE does not contain the
LWM2M Bootstrap Server capability, consequently the LWM2M Client provi-
sioning operations shall be part of an out-of-band process.

7 Transparent Interworking Function
7.1 Introduction
Clause 5.3 introduced the Transparent Interworking function as depicted in
Figure 5.3-1. This clause specifies the mappings of the attributes of the <con-
tentInstance> resource for a <container> resource in order to allow an AE that
uses the Content Sharing Resource to understand that the Content Sharing
Resource has an encapsulated LWM2M Object or Object Instance.

7.2 Attribute Mapping for the <contentInstance> Re-
sources
When an AE accesses a <contentInstance> resource, the AE needs to know
that the <contentInstance> resource encapsulates a LWM2M Object or Object
Instance as well as how the LWM2M Object or Object Instance is encoded.

Table 21: Table 7.2-1: Transparent Interworking Function Mapping

Interworking Function Mapping oneM2M Resource Attribute
Indication that a LWM2M Object or
Object Instance is encapsulated in the
<contentInstance> resource with the
content type and encoding of the
LWM2M Object or Object Instance.

<contentInstance> resource: labels.
Value is
“LWM2M-Object-Encapsulation”

The content type of the LWM2M
Object or Object Instance based on
the Content-Type option

<contentInstance>: contentInfo.
Possible contentInfo values are
translated from the LWM2M
Content-Type option (see note).

NOTE: The LWM2M Technical
Specification [3] defines the value to
be used for the [encoding] if the
Content-Type option is not present.

34

8 Semantically Enabled Interworking Function
(Informative)
8.1 Introduction
Clause 5.3 introduced the Semantically Enabled Interworking function as depicted
in Figure 5.3-2. This clause specifies how LWM2M Objects and their associated
LWM2M Resources are organized as <container> resources in order for values
associated with the LWM2M Resources be translated into <contentInstance>
resources. In addition, this clause specifies the mapping of Content Sharing
Resources the oneM2M Base Ontology [i.5].

8.2 Organization of Semantically Enabled Content Sharing
Resources
8.2.1 Introduction

Semantically enabled Content Sharing Resources represent the structure and con-
tent of LWM2M Objects and Object Instances by translating LWM2M Objects,
Object Instances and their LWM2M Resources and LWM2M Resource Instances
into a hierarchy of Content Sharing Resources using the Content Sharing Re-
source’s parent-child relationship described in oneM2M TS-0001 [2]. In addition,
the LWM2M Resources values are contained within the <contentInstance>
resource for <container> resources.

When the LWM2M Resource is of type LWM2M Object Link, the <contentIn-
stance> resource that represents the LWM2M Resource is used to represent the
LWM2M Object Link by assigning the destination of the LWM2M Object Link
reference to another LWM2M Object’s Content Sharing Resource. The reference
is assigned using the <contentInstance> resource’s contentRef attribute where
the name of the attribute is “ObjectLink” and the value of the attribute is the
URI of the destinaton Content Sharing Resource.

8.2.2 Lifecycle of Semantically Enabled Content Sharing Resources

Clauses 6.3 and 6.4 describe how LWM2M Objects and Object Instances are
discovered and instantiated. The Semantic Interworking function uses these
procedures for instantiation of the Content Sharing Resource for the LWM2M
Objects and Object Instances.

The Content Sharing Resources for LWM2M Resources and Resource Instances
are created as child resources of the parent Content Sharing Resource when the
LWM2M Object and Object Instance are created. Likewise these child Content
Sharing Resources are deleted when the parent Content Sharing Resource is
deleted.

Creation, update or deletion of one or more <contentInstance> resources for the
LWM2M Resource or Resource Instances that are not caused by the creation

35

Figure 11: Figure 8.2.1-1: Relationships of LWM2M Semantically Enabled
Content Sharing Resources

or deletion of the parent LWM2M Object or Object Instance Content Sharing
Resource maps to the following operations on the LWM2M Client.

36

Table 22: Table 8.2.2-1: LWM2M Resource Content Sharing Re-
source Lifecycle Translation

LWM2M Operation
Device Management & Service
Enablement Interface

oneM2M Resource and Operation
LWM2M Resource or Resource
Instance
Child Content Sharing Resource

Write create child Content Sharing Resource
for new Resource or Resource Instance.
The name of the Content Sharing
Resource shall be the Resource Id for
a singleton LWM2M Resource. The
name of the Content Sharing Resource
shall be the LWM2M Resource ID and
LWM2M Resource Instance Id.

When the LWM2M Resource is of
type LWM2M Object Link, the
<contentInstance> resource that
represents the LWM2M Resource is
used to represent the LWM2M Object
Link by assigning the destination of of
the LWM2M Object Link reference to
another LWM2M Object’s Content
Sharing Resource. The reference is
assigned using the <contentInstance>
resource’s contentRef attribute where
the name of the attribute is
“ObjectLink” and the value of the
attribute is the URI of the destination
<contentInstance> resource.

Not applicable update Content Sharing Resource
Write delete Content Sharing Resource for

Resource or Resource Instance
Not Applicable read Content Sharing Resource

Table 23: Table 8.2.2-2: LWM2M Resource <contentInstance>
Lifecycle Translation

LWM2M Operation
Device Management & Service
Enablement Interface

oneM2M Resource and Operation
LWM2M Resource or Resource
Instance <contentInstance> resource

Write create <contentInstance>

37

LWM2M Operation
Device Management & Service
Enablement Interface

oneM2M Resource and Operation
LWM2M Resource or Resource
Instance <contentInstance> resource

Write - Sets the Resource to default
value

delete <contentInstance>

Read read <contentInstance>

8.2.3 Mapping for the Encoding of the <contentInstance> Resource

When an AE accesses a <contentInstance> resource, the AE needs to know how
the value of the Resource or Resource Instance is encoded.

Table 24: Table 8.2.3-1: Mapping of Resource or Resource Instance
Encoding

Interworking Function Mapping oneM2M Resource Attribute
The encoding of the LWM2M
Resource or Resource Instance based
on the Content-Type option

<contentInstance>: contentInfo.
Possible contentInfo values are
translated from the LWM2M
Content-Type option. Note: The
LWM2M Technical Specification [3]
defines the value to be used for the
[encoding] if the Content-Type option
is not present.

8.3 Guidelines for Mapping to the Base Ontology
8.3.1 Introduction

Clause 8.2 describes the structure and relationships of the LWM2M Objects and
Object Instances along with their associated Resources and Resource Instances.
Using that structure this clause provides guidance on mapping the Base Ontol-
ogy described by [i.5] onto that resource structure. As ontologies are created
for specific applications of LWM2M Objects (e.g. Device Management, Home
Automation), this clause can only be used for a basis of creating the application
specific ontology because certain elements of base ontology (e.g. Aspects, Func-
tionality, Services) cannot be inferred by the LWM2M definitions of LWM2M
Objects, Object Instances, Resources or Resource Instances.

8.3.2 Mapping of the LWM2M Client

LWM2M Clients are represented as <AE> resources and are mapped to an
InterworkedDevice. <AE> resources exposed by the LWM2M Server associated
with the IPE are mapped to the same Area Network.

38

8.3.4 Mapping of the LWM2M Object, Object Instance. Resource and
Resource Instance

8.3.4.1 Introduction Editor’s note: Is a single sub-clause allowed?

Mapping the LWM2M Object, Object Instance. Resource and Resource Instance
to the Base Ontology is based on the following guidelines:

• LWM2M Clients are mapped to InterworkedDevices
• LWM2M Objects are mapped to Services and Functionality
• LWM2M Resources that represent static (configured) properties of LWM2M

Objects are mapped to ThingProperties.
• LWM2M operation of Execute map to Operation and Command
• LWM2M Create, Update, Retrieve and Delete operations permitted for

the LWM2M Object or Object Instances map to Operation and Command
• LWM2M Resources (including those of type Object Link) are mapped to

Input- / OutputDataPoints.
– Sub-structures of LWM2M Resources are mapped to Variables that are

sub-structures of Input- / OutputDataPoints (via the hasSubStructure
relation).

∗ Read-only LWM2M Resources map to Output DataPoint.
∗ Write-only LWM2M Resources map to Input DataPoint.
∗ Read-write LWM2M Resources map to Input Datapoint and

Output Datapoint with the same instance of a Variable
– If the LWM2M Object doesn’t have a command state, the IPE will

instantiate and maintain a <container> resource for command’s state.
In both instances the LWM2M Resource that represents the command
state maps to Output DataPoint.

9 oneM2M Management Object-based Interwork-
ing Function
9.1 Introduction
Clause 5.3 introduced the Management Object-based Interworking function as
depicted in Figure 5.3-3. This clause specifies the mappings of the attributes
of oneM2M resources to LWM2M objects in order to allow an AE to use the
oneM2M resource without needing to understand the underlying LWM2M Object,
Object Instance or Resource syntax or semantics.

9.2 Translation of oneM2M Management Resource Types
9.2.1 Introduction

These mappings and procedures are used to translate between LWM2M Objects,
Object Instances and Resources and the applicable management-related oneM2M
resource types.

39

9.2.2 Translation to <mgmtObj> Resource Types

9.2.2.1 Mapping to <mgmtObj> Resource Types TS-0005 [4] provides
the procedures and mappings needed to translate LWM2M Objects, Object
Instances and Resources into <mgmtObj> resource types. Relevant clauses
include:

• Clause 6.1 and 6.3 of TS-0005 [4] provides mapping LWM2M Objects,
Object Instances and Resources into <mgmtObj> resource types.

• Clause 6.2.1 of TS-0005 [4] provides a mapping of the LWM2M Endpoint
Client Name to the M2M-Node-ID.

• Clauses 6.2.2 and 6.2.3 of TS-0005 [4] provides mapping of the LWM2M
Object and Instance Identifiers to the <mgmtObj> resource’s objectId
and objectPath attributes.

• Clause 6.7 of TS-0005 [4] provides a set of guidelines that shall be followed
for one-to-one mapping of a a LWM2M Object and its resources to a
corresponding oneM2M <mgmtObj> and its [objectAttribute]s.

LWM2M IPEs shall implement clause 6.1 and 6.3 or clause 6.7 of TS-0005 [4]
when translating between LWM2M Objects, Object Instances and Resources
and <mgmtObj> resource types.

Clause 6.2.2.2 of this present document provides the normative language that
addresses the mapping of the LWM2M Endpoint Client Name used for naming
the <node> resource type associated with the LWM2M Client. This is because
Clause 6.2.1 of TS-0005[4] does not allow for multiple LWM2M Clients to be
hosted on the same device.

Clause 6.3 of this present document provides normative language that addresses
how LWM2M Object and and Instance identifiers are mapped for oneM2M
resource naming and discovery. For <mgmtObj> resources, LWM2M IPEs shall
implement clause 6.2.2 and 6.2.3 of TS-0005 [4] along with clause 6.3 of this
present document.

9.2.2.2 Interworking of <mgmtObj> Resources

9.2.2.2.1 Introduction Clause 10.2.8 of TS-0001 [2] discusses the procedures
for the <mgmtObj> resources as well as where the resources are hosted and
the <mgmtObj> resource’s relationship with its parent <node> resource. As
the <node> resource is the parent resource of the <mgmtObj> resources for
the node, clause 6.4.2, 6.5.2 and 6.5.3 of this present document is unable to
address the relevant interworked resource settings and procedures that allows the
LWM2M IPE to be notified of changes to <mgmt O bj> resources or to secure
the <mgmtObj> resource. This clause provides the mapping to the settings and
procedures necessary to accomplish this interworking.

9.2.2.2.2 Interworking of <mgmtObj> Resource Settings For support-
ing the LWM2M interworking process, a few attributes for the <node> resource,

40

<mgmtObj> resource and the <subscription> resource shall have a specified set
of parameters.

a) Attributes of <node> resource

Table 25: Table 9.2.2.1.2-1: <node> resource - Relevant Interworked
Attributes

Attributes of <mgmtObj> resource Value
accessControlPolicyIDs ACP set (see Clause 6.6)
nodeID The M2M-Node-ID of the node which

is represented by this <node>
resource.

hostedCSELink The resource ID of a resource where
all of the following applies:
- The resource is a <CSEBase>
resource or a <remoteCSE> resource.
- The resource is hosted on the same
CSE as the present <node> resource.
The resource represents the CSE
which resides on the specific node that
is represented by the current <node>
resource.

mgmtClientAddress Represents the physical address of
management client of the node which
is represented by this <node>
resource.

This attribute is absent if management
server is able to acquire the physical
address of the management client.

b) Attributes of <mgmtObj> resource

Table 26: Table 9.2.2.1.2-2: <mgmtObj> resource - Relevant Inter-
worked Attributes

Attributes of <mgmtObj> resource Value
accessControlPolicyIDs ACP set (see Clause 6.6)
mgmtDefinition Examples are software, firmware,

memory. The list of the value of the
attribute can be seen in annex D of
TS-0001.

41

Attributes of <mgmtObj> resource Value
mgmtSchema Contains a URI to the <mgmtObj >

schema definition which shall be used
by the Hosting CSE to validate the
syntax of incoming primitives
targeting this <mgmtObj> resource.

This URI may refer to a oneM2M
specified <mgmtObj > definition as
well as other <mgmtObj> definitions.

objectIDs Contains the list of URNs that
uniquely identify the technology
specific data model objects used for
this <mgmtObj> resource as well as
the managed function and version it
represents.

objectPaths Contains the list of local paths of the
technology specific data model objects
on the managed entity which is
represented by the <mgmtObj>
resource in the Hosting CSE. An
example is:

/5/0
The combination of the objectPaths
and the objectIDs attribute, allows to
address the technology specific data
model.

mgmtLink This attribute contains reference to a
list of other <mgmtObj> resources in
case a hierarchy of <mgmtObj> is
needed.

[objectAttribute] Each [objectAttribute] is mapped from
a leaf node of a hierarchical structured
technology specific data model object
(including oneM2M data model and
the technology specific data model
objects) based on the mapping rules
below the table.

description Text format description of
<mgmtObj>.

9.2.2.2.3 Synchronization <mgmtObj> resources <mgmtObj> resources
can be maintained by AEs and/or the LWM2M IPE on behalf of the LWM2M
client. Since AEs can maintain <mgmtObj> resources, the request originator

42

(i.e., AE, LWM2M IPE AE) shall create a subscription to notify the LWM2M
IPE when the <mgmtObj> resource is created, deleted or updated using the
setting as described in Table 9.2.2.1.3-1.

Table 27: Table 9.2.2.1.3-1: Subscription Procedure - <subscrip-
tion> resource

Attributes of <subscription> Description
accessControlPolicyIDs Link a <accessControlPolicy>

resource with the privileges:
accessControlOriginator originatorID
set to the LWM2M IPE AE’s AE-ID
accessControlOperations: Set to
RETRIEVE, CREATE, UPDATE,
DELETE, DISCOVER, NOTIFY

pendingNotification Set to “sendLatest”
latestNotify Set to “latest”.
notificationContentType Set to “resource”
<schedule> Set to immediate notification

9.2.2.3 Example of creating new specialized <mgmtObj> resources
Using the generic guidelines outlined in Clause 6.7 of TS-0005 [4], new <mgm-
tObj> specialization resources may be created on the CSE. Figure 9.2.2.3-1
shows the procedure a Hosting CSE executes to create a new <mgmtObj>
specialization resource using the mgmtSchema attribute. The URI of the schema
file for the <mgmtObj> specialization resource is provided in the mgmtSchema
attribute of the request to create the <mgmtObj> resource. The Hosting CSE
then retrieves the schema file using the URI and process the request as outlined
below.

Step 001: The Originator shall send mandatory parameters and may send
optional paramters in the Request message for a CREATE operation of a
<mgmtObj> specialization resource. The specialized <mgmtObj> resource
contains a full mapping of the underlying LWM2M Object and includes the URI
of the XSD for the new specialized resource in the mgmtSchema attribute.

Step 002: The Receiver shall:

1. Check if the Originator has the appropriate privileges for performing the
request.

2. Verify that the name for the created resource as suggested by the re-
sourceName parameter does not already exist among child resources of the
targeted resource.

Step 003: The Receiver shall check if the type <mgmtObj> specialization is
present in the supportedResourceType attribute of the CSEBase. If found in
the supportedResourceType attribute, go to Step 8; otherwise, go to Step 4.

43

Figure 12: Figure 9.2.2.3-1: Procedure for CSE to Support New Specialized
<mgmtObj> Resources

Step 004: The Receiver extracts the contents of the mgmtSchema attribute
and retrieves an XSD from the XSD Repository.

Step 005: The XSD Repository returns the XSD for the specialized <mgmtObj>
resource.

Step 006: The Receiver checks the received XSD is well formed and if it is,
saves the XSD to the Receiver’s local XSD repository.

Step 007: The Receiver updates the supportedResourceType attribute with the
type of the specialized <mgmtObj>.

Step 008: The Receiver completes processing the CREATE request.

1. Assign a Resource-ID to the resource to be created.

2. Assign values for mandatory RO mode attributes of the resource and
override values provided for other mandatory attributes and where allowed
by the resource type definition and if not provided by the Originator itself.

3. The Receiver shall assign a value to the following common attributes:

a. parentID;

b. creationTime;

44

c. expirationTime: if not provided by the Originator, the Receiver shall
assign the maximum value possible (within the restriction of the
Receiver policies). If the value provided by the Originator cannot
be supported, due to either policy or subscription restrictions, the
Receiver will assign a new value;

d. lastModifiedTime: which is equals to the creationTime;

e. Any other RO (Read Only) attributes within the restriction of the
Receiver policies.

4. The Receiver shall check whether a creator attribute is included in the
Content parameter of the request. If included, the creator attribute shall
not have a value in the Content parameter of the request. On the other
hand if the creator attribute is not included in the Content parameter of
the request, then the Receiver shall not include the creator attribute in
the resource to be created.

5. On successful validation of the Create Request, the Receiver shall create
the requested resource.

6. The Receiver shall check if the created child resource leads to changes in
its parent resource’s attribute(s), if so the parent resource’s attribute(s)
shall be updated.

Step 009: The Receiver shall respond with mandatory parameters and may
send optional parameters in Response message for CREATE operation.

General Exceptions:

Editor’s note: Is the following numbering correct? Does it refer to the previous
steps?

4. The Originator does not have the privileges to create a resource on the
Receiver. The Receiver responds with an error.

5. The resource with the specified name (if provided) already exists at the
Receiver. The Receiver responds with an error.

• The provided information in Content is not accepted by the Receiver
(e.g. missing mandatory parameter). The Receiver responds with an error.

9.2.2.4 LWM2M Interworking Procedure Figure 9.2.2.4-1 shows an ex-
ample end-to-end procedure demonstrating how the procedures shown in Figure
9.2.2.3-1 can be utilized as part of LWM2M Interworking. The LWM2M Server
and the IPE are co-located, and together they perform oneM2M procedures on
behalf of the LWM2M Device. A LWM2M Device will initially register to the
LWM2M Server and provides a list of all the LWM2M objects it supports. The
LWM2M Server/IPE will then perform a oneM2M registration on behalf of the
device and requests to create an <AE> resource. Once the <AE> resource is

45

created, the IPE will then create a <node> resource to host all the <mgmtObj>
resources for the device. As part of this step, the nodeLink attribute of the <AE>
resource will be updated to point to the newly created <node> resource. The
IPE then proceeds to create a specialized <mgmtObj> resource for each LWM2M
objects the device supports. The specialized <mgmtObj> resource will directly
map to the corresponding LWM2M Object using the objectAttribute attribute of
the <mgmtObj>. This will allow for one-to-one mapping of LWM2M resources
to oneM2M attributes. Once all the <mgmtObj> specializations are created, the
IPE/LWM2M Server returns an appropriate response to the LWM2M Device.

NOTE: The following procedure shows only a high level call flow of the interac-
tions among the LWM2M Device, the LWM2M Server/IPE, and the Hosting
CSE. It does not detail all the steps required to perform the indicated operations.

Figure 13: Figure 9.2.2.4-1: End-to-end LWM2M Interworking Procedure

Step 001: A LWM2M device registers to the LWM2M Server and provides a
list of supported LWM2M Objects. Co-located with the LWM2M Server is the
IPE.

Step 002: In response to the LWM2M registration, the IPE requests to create
an <AE> resource on the Hosting CSE on behalf of the LWM2M Device.

Step 003: The Hosting CSE evaluates the request, performs the appropriate
checks, and creates the <AE> resource.

Step 004: A response is sent to the IPE indicating the <AE> resource was

46

created.

Step 005: The IPE proceeds to create a <node> resource for the LWM2M
Device so <mgmtObj> specialization resources can be created for AE’s to
manage the device. As part of this multi-step procedure, the nodeLink attribute
of the <AE> resource created in Step 003 is updated to point to the newly
created <node> resource.

Step 006: The Hosting CSE creates the <node> resource and updates the
<AE>’s nodeLink attribute as well.

Step 007: The Hosting CSE returns an appropriate response for creating the
<node> resource.

Step 008: For each of the LWM2M Objects supported by the LWM2M Device,
the IPE creates an appropriate specialized <mgmtObj> resource as a child of
the <node> resource. This <mgmtObj> specialization maps one-for-one with
the corresponding LWM2M Object.

Step 009 : .The Hosting CSE creates the <mgmtObj> specialization resource.

Step 010: An appropriate response is returned to the IPE for the creation of
the <mgmtObj> specialization resource.

Step 011: The IPE/LWM2M Server completes the LWM2M registration proce-
dure by sending the LWM2M Device an appropriate response.

9.2.2.5 Use of oneM2M attribute level subscription in LWM2M Inter-
working Once the <mgmtObj> resources are created, attribute level subscrip-
tions can be created to get notifications for certain desired operation such as a
firmware update process. With the one-to-one mapping relationship between
LWM2M resources and oneM2M [objectAttribute], attribute level subscriptions
can be made. Table 9.2.2.5-1 shows a mapping of the LWM2M Firmware Update
object to a new oneM2M Firmware <mgmtObj> with all the LWM2M resources
mapped one for one to oneM2M attributes.

Table 28: Table 9.2.2.5-1: LWM2M Firmware Update Object 1:1
Mapping to oneM2M <mgmtObj> Resource

LWM2M Resource Name LWM2M Resource # [objectAttribute]
Package 0 package
Package URI 1 pkgURI
Update 2 update
State 3 state
Update Result 5 updateResult
Pkg Name 6 pkgName
Pkg Version 7 pkgVersion
Firmware Update
Protocol Support

8 firmwareUpdateProtocolSupport

47

LWM2M Resource Name LWM2M Resource # [objectAttribute]
Firmware Update
Delivery Method

9 firmwareUpdateDeliveryMethod

The call flow below uses the updated Firmware Update object mapping in Table
9.2.2.5-1 to allow an AE to monitor the state of a firmware update on a LWM2M
device. Prior to initiating a firmware update, the AE can subscribe to the state
attribute of the 1:1 mapped firmware <mgmtObj> to get notifications of the
firmware update process. Figure 9.2.2.5-1 shows the end-to-end use case of using
oneM2M’s attribute level subscription to get notifications for the state of the
firmware update.

Figure 14: Figure 9.2.2.5-1: oneM2M Attribute Level Subscription Use Case

Step 001: AE subscribes to the state attribute of the firmware <mgmtObj>
associated with LWM2M Device.

Step 002: Hosting CSE grants the subscription and sends a successful response.

Step 003: AE sends a firmware update request to update the firmware on the
LWM2M Device.

Step 004: Hosting CSE processes the request and performs the following:

a) Hosting CSE sends a Notify message to the IPE of the firmware update

48

request.

b) Hosting CSE sends a successful response to the AE.

Step 005: The LWM2M Server/IPE sends a firmware update command to the
LWM2M Device.

Step 006: The LWM2M Device receives the command and performs the
download of the firmware image.

a) The LWM2M Device sends an update to the LWM2M Server with status
that state = Downloading

b) The LWM2M Server/IPE sends an update to the Hosting CSE with status
that state = Downloading.

c) The Hosting CSE sends a notify to the AE with status that state =
Downloading.

Step 007: The LWM2M Device completes the download and updates its state
resource.

a) The LWM2M Device sends an update to the LWM2M Server with status
that state = Downloaded.

b) The LWM2M Server/IPE sends an update to the Hosting CSE with status
that state = Downloaded.

c) The Hosting CSE sends a notify to the AE with status that state =
Downloaded.

Step 008: The LWM2M Device begins updating the firmware and updates its
state resource.

a) The LWM2M Device sends an update to the LWM2M Server with status
that state = Updating.

b) The LWM2M Server/IPE sends an update to the Hosting CSE with status
that state = Updating.

c) The Hosting CSE sends a notify to the AE with status that state =
Updating.

Step 009: The LWM2M Device completes updating the firmware successfully
and updates its state resource.

a) The LWM2M Device sends an update to the LWM2M Server with status
that state = Idle.

b) The LWM2M Server/IPE sends an update to the Hosting CSE with status
that state = Idle.

49

c) The Hosting CSE sends a notify to the AE with status that state = Idle.

Annex A (Informative): Introduction to OMA
LightweightM2M (LWM2M)
A.1 Introduction
OMA Lightweight M2M is a protocol for device and service management for
M2M. The main purpose of this technology is to address service and management
needs for constrained M2M devices, over UDP and SMS bearers.

NOTE: This annex provides an overview of the LWM2M protocol.
The authoritative source for the protocol is provided by the LWM2M
Technical Specification [3].

The crucial aspects in this work are the:

• Target devices for this protocol are resource constraint devices (e.g. 8-16bit
MCU, RAM is in tens of KB and flash is in hundreds of KB).

• Ability to perform Data collection and remote control of devices without
the need for complex computing and UI operations.

• Optimization of network resources to allow a large numbers of devices may
be connected to the communication network simultaneously.

• Fusion of device functionalities management and service manipulation into
a single protocol.

From the implementation view LWM2M has the following features:

• Suitable for resource constraint devices.
• Usage of compact binary packets.
• Support for multiple data encoding formats that include Binary , JSON,

plain text and opaque data formats.
• Support for reporting information from the Server to the Client when

specified condition are met.
• Easy to be implemented though the reuse of existing implementation of

IETF technologies : e.g. CoAP.
• (Constrained Application Protocol) for the Transfer Protocol, and DTLS

(Datagram, Transport Layer Security) [i.3] for securing the Server/Client
exchanges.

One of typical use cases of using LWM2M technology is the firmware upgrade of
streetlights [i.4].

• A Streetlights supervisor is responsible for managing the streetlights system.
(There are thousands of streetlights in the city and low-cost LWM2M devices
embedded in the streetlights.)

50

• The supervisor needs to remotely upgrade of the firmware of a specific
streetlight or a group of streetlights.

Figure 15: Figure A.1-1: Firmware Upgrade of Streetlight of Use Case using
LWM2M

A.2 Architecture
As shown in the Figure A.2-1, the layout is the architecture of LWM2M [3]. The
Components specified by OMA LWM2M compose the LWM2M enabler which
specifies the LWM2M Server / LWM2M Client interface. The LWM2M Server
and LWM2M Client are typically instantiated in a M2M Server and a M2M
Device.

Based on the deployment scenario, the LWM2M Server has the bootstrapping
capability itself, or the LWM2M Bootstrap Server exists separately for security
reasons.

A.3 Terminology
LWM2M [3] is a RESTful protocol with concepts that are similar to oneM2M,
however LWM2M uses different terms for these concepts. The following table
provides a comparison of applicable LWM2M and oneM2M terminology.

Table 29: Table A.3-1: LWM2M/oneM2M Terminology Mapping

LWM2M Terminology oneM2M Terminology
Client Endpoint <AE> resources that reside on

devices and oneM2M nodes.

51

LWM2M Terminology oneM2M Terminology
Object, Object Instance Resource in general;

<contentInstance> resource when
used for interworking.

Resource Attribute for a Resource.

A.4 Reference Points
A.4.1 Introduction

This clause introduces the interfaces carried over the reference point consisting
of two main components LWM2M Server and the LWM2M Client.

A.4.2 Functional Components

A.4.2.1 LWM2M Server The LWM2M Server is a logical component which
serves as an endpoint of the LWM2M protocol.

A.4.2.2 LWM2M Client The LWM2M Client is a logical component. This
LWM2M Client serves as an endpoint of the LWM2M protocol and communi-
cates with the LWM2M Server to execute the device management and service
enablement operations from the LWM2M Server and reporting results of the
operations.

A.4.3 Interfaces

There are four interfaces supported by the reference point between LWM2M
server and LWM2M Client. The logical operation of each interface is defined as
follows:

• Bootstrap:
– This interface is used to provision essential information into the

LWM2M Client so that the LWM2M Client can register to the
LWM2M Server(s) after bootstrap procedure has completed.

• Client Registration:
– This interface allows the LWM2M Client register to the LWM2M

Server. This procedure lets the Server know the existence and in-
formation (e.g. address, capabilities) of the LWM2M Client so that
LWM2M Server can perform M2M services and device management
on the LWM2M Client.

• Device Management and Service Enablement:
– This interface allows the LWM2M Server to perform the device man-

agement and M2M service enablement operations. Over this interface,
the LWM2M Server can send operations to the LWM2M Client and
gets response of the operations from the LWM2M Client.

• Information Reporting:

52

Figure 16: Figure A.2-1: LWM2M Architecture

– This interface allows the LWM2M Client to report resource infor-
mation to the LWM2M Server. This Information Reporting can
be triggered periodically or by events (e.g. resource information is
changed and configured conditions are met).

A.5 Protocols
A.5.1 Protocol Stack

The LWM2M has the protocol stack defined as below.

• LWM2M Objects: LWM2M Objects are designed for the functionality
provided by the LWM2M enabler. The LWM2M specification [i.4] defines
a set of Standard Objects. Other Objects may also be added by OMA,
external SDOs (e.g. the IPSO alliance) or vendors to enable certain M2M
Services.

• LWM2M Protocol: LWM2M protocol defines the logical operations and
mechanisms per each interface.

• CoAP: The LWM2M utilizes the IETF Constrained Application Protocol
[i.2] as an underlying transfer protocol across UDP and SMS bearers.
This protocol defines the message header, request/response codes, message
options and retransmission mechanisms. The LWM2M only uses the subset
of features defined in CoAP.

• DTLS: DTLS [i.3] is used to provide secure UDP/SMS on-device channels
between the LWM2M Server and the LWM2M Client for all the messages
interchanged.

• UDP Binding with CoAP (Mandatory): Reliability over the UDP transport

53

Figure 17: Figure A.5.1-1: LWM2M Protocol Stack

is provided by the built-in retransmission mechanisms of CoAP.
• SMS Binding with CoAP (Optional): CoAP is used over SMS by placing

a CoAP message in the SMS payload using 8-bit encoding.

A.5.2 Data Model

In the LWM2M Enabler technical specification [i.4], a simple data model is
described. Basically, a resource made available by data model of the LWM2M
Client is a Resource, and Resources are logically organized into Objects. Figure
A.5.2-1 illustrates this structure, and the relationship between Resources, Objects,
and the LWM2M Client. The LWM2M Client may have any number of Resources,
each of which belongs to an Object.

Resources are defined per Object, and each resource is given a unique identifier
within that Object. Each Resource is designed to have one or more Operations
that it supports. A Resource may be a single or multiple (possibility of several
instantiations) one, dependent on the Resource definition in Object specification.
An Object defines a grouping of Resources, for example the Firmware Object
contains all the Resources used for firmware update purposes. The LWM2M
enabler defines standard Objects and Resources and other Objects may be added
to enable a certain M2M Services.

Object needs to be instantiated either by the LWM2M Server or the LWM2M
Client, which is called Object Instance, before using the functionality of an

54

Figure 18: Figure A.5.2-1: LWM2M Data Model [3]

55

Object. After Object Instance is created, the LWM2M Server can access that
Object Instance and Resources in the Object Instance. Furthermore a Resource
can contain a simple value (e.g. sensor measure), or a reference to an Object
Instance.

A.5.3 Interface Descriptions

A.5.3.1 Bootstrap The Bootstrap interface is used to provision essential
information into the LWM2M Client in order to allow the LWM2M Client to
be able to register to a certain LWM2M Server. There are four modes for
bootstrapping:

• Factory Bootstrap: the LWM2M Client is already provisioned at the time of
the device manufacture. The pre-configured data is stored in the LWM2M
Client.

• Bootstrap from Smartcard: When the Device supports a Smartcard and
retrieval of bootstrap message from Smartcard is successful, the LWM2M
Client processes the bootstrap message from the Smartcard and applies it
to the LWM2M Client.

• Client initiated Bootstrap: the LWM2M Client requests and retrieves the
bootstrap message from a LWM2M Bootstrap Server. In this case the
LWM2M Client needs to be pre-provisioned with the LWM2M Bootstrap
Server Bootstrap Information.

• Server initiated Bootstrap: the LWM2M Bootstrap Server provisions the
bootstrap message into the LWM2M Client after recognizing the existence
of the LWM2M Device. In this case the LWM2M Client needs to be pre-
provisioned with the LWM2M Bootstrap Server Bootstrap Information.

Figure 19: Figure A.5.3.1-1: Bootstrap Modes

A.5.3.2 Client Registration The Client Registration interface is used by
the LWM2M Client to register with one or more LWM2M Servers, maintain
each registration, and de-register from the LWM2M Server(s). When registering,
the LWM2M Client indicates its Endpoint Name, MSISDN, supporting binding
modes, lifetime of registration, the list of Objects the Client supports and
available Object Instances. The registration is a soft state, with a lifetime

56

indicated by the registration lifetime. The LWM2M Client periodically performs
an update of its registration information to the registered Server(s). If the
lifetime of a registration expires without receiving an update from the Client,
the Server removes the registration information. Finally, when shutting down or
discontinuing use of a Server, the Client performs de-registration.

Figure 20: Figure A.5.3.2-1: Example of Registration Procedure

A.5.3.3 Device Management and Service Enablement This interface
is used by the LWM2M Server to access Resources available from a LWM2M
Client using Create, Read, Write, Delete, or Execute operations. The operations
that a Resource supports are defined in the definition of its Object.

A.5.3.4 Information Reporting This interface is used by the LWM2M
Server to observe any changes in a Resource on the LWM2M Client, receiving
notifications when new values are available. The LWM2M Server needs to
configure observation related parameters by sending “Write Attribute” operation
before observing Resources in the LWM2M Client. This observation relationship
is initiated by sending an “Observe” operation to the L2M2M Client for an

57

Figure 21: Figure A.5.3.3-1: Example of Device Management and Service
Enablement Interface

58

Object Instance or Resource. An observation ends when a “Cancel Observation”
operation is performed

Figure 22: Figure A.5.3.4-1: Example of Information Reporting Interface

A.6 Functions
A first set of standard Objects for the LWM2M 1.0 enabler have been developed:

• Server Security: security data related to the LWM2M server(s) and/or the
LWM2M Bootstrap Server.

• Server: data, configuration, functions related to the LWM2M Server.
• Access Control: to check whether the LWM2M server has access right for

performing an operation on Resources in the LWM2M Client.
• Device: provision of a range of device related information, device reboot

and factory reset function.

59

• Connectivity Monitoring: to monitor parameters related to underlying
network connectivity.

• Firmware: provision of firmware management, installing and updating new
firmware.

• Location: provides location information of the LWM2M Devices.
• Connectivity Statistics: to statistical information of network connection

(e.g. SMS counter, UDP data size).

These Standard Objects are intended to support a variety of functionalities to
manage LWM2M Devices. OMA has already specified others LWM2M objects
(e.g. as Software Management, Device Capability Management,) and may create
further objects in future. Furthermore, other organizations and companies may
define additional LWM2M Objects for their own M2M services using according
to LWM2M Object Template and Guideline Annex in [3]: e.g. oneM2M has
specified the set of LWM2M Objects around CMDH Policy functionality; IPSO
Alliance has developed LWM2M Objects for various sensors.

History
Publication history

Version Date Description
V3.1.1 February 2019 Release 3 - Publication
V4.0.0 February 2023 Release 4 - Publication

Draft history (to be removed on publication)

Version Date Description
V4.0.1 2024-11-09 SDS-2024-0136-TS-

0014_initial_conversion_to_markdown

60

https://git.onem2m.org/specifications/ts/ts-0014/-/merge_requests/1
https://git.onem2m.org/specifications/ts/ts-0014/-/merge_requests/1

	Contents
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Conventions
	5 Architecture Model
	5.1 Introduction
	5.2 Reference Model
	5.3 Types of Interworking
	5.4 Composition of the Interworking Proxy Entity

	6 Architecture Aspects
	6.1 Introduction
	6.2 LWM2M Device and Endpoint Lifecycle
	6.2.1 Introduction
	6.2.2 LWM2M Device and Endpoint Resource Representation

	6.3 LWM2M Object Discovery
	6.3.1 Introduction
	6.3.2 LWM2M Object Identifier Representation

	6.4 LWM2M Object Transport and Interworking
	6.4.1 Introduction
	6.4.2 LWM2M Interworking Mechanisms
	6.4.3 oneM2M Resource Operation Responses

	6.5 LWM2M Object Subscription and Notification
	6.5.1 Introduction
	6.5.2 LWM2M Subscription Procedure
	6.5.3 LWM2M Notification Procedure

	6.6 LWM2M Object Security
	6.6.1 Introduction
	6.6.2 LWM2M Interworking Access Control Policy
	6.6.3 IPE and Object Security provisioning

	6.7 LWM2M IPE Administration and Maintenance
	6.7.1 Introduction
	6.7.2 Administration and Maintenance of the LWM2M Server Functionality
	6.7.3 Maintenance of the LWM2M IPE AE Context

	6.8 LWM2M Client Provisioning (Bootstrap)

	7 Transparent Interworking Function
	7.1 Introduction
	7.2 Attribute Mapping for the <contentInstance> Resources

	8 Semantically Enabled Interworking Function (Informative)
	8.1 Introduction
	8.2 Organization of Semantically Enabled Content Sharing Resources
	8.2.1 Introduction
	8.2.2 Lifecycle of Semantically Enabled Content Sharing Resources
	8.2.3 Mapping for the Encoding of the <contentInstance> Resource

	8.3 Guidelines for Mapping to the Base Ontology
	8.3.1 Introduction
	8.3.2 Mapping of the LWM2M Client
	8.3.4 Mapping of the LWM2M Object, Object Instance. Resource and Resource Instance

	9 oneM2M Management Object-based Interworking Function
	9.1 Introduction
	9.2 Translation of oneM2M Management Resource Types
	9.2.1 Introduction
	9.2.2 Translation to <mgmtObj> Resource Types

	Annex A (Informative): Introduction to OMA LightweightM2M (LWM2M)
	A.1 Introduction
	A.2 Architecture
	A.3 Terminology
	A.4 Reference Points
	A.4.1 Introduction
	A.4.2 Functional Components
	A.4.3 Interfaces

	A.5 Protocols
	A.5.1 Protocol Stack
	A.5.2 Data Model
	A.5.3 Interface Descriptions

	A.6 Functions

	History

