
oneM2M
Technical Specification

oneM2M
Technical Specification

Document Number TS-0034-V5.0.0
Document Name: Semantics Support
Date: 2024-06-25
Abstract: This specification provides normative text

for semantic enablement in oneM2M
Template Version: January 2017
(Do not modify)

Template Version: January 2017 (Do not
modify)

This Specification is provided for future development work within oneM2M only.
The Partners accept no liability for any use of this Specification.

The present document has not been subject to any approval process by the
oneM2M Partners Type 1. Published oneM2M specifications and reports for
implementation should be obtained via the oneM2M Partners’ Publications
Offices.

About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which
address the need for a common M2M Service Layer that can be readily embedded
within various hardware and software, and relied upon to connect the myriad of
devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: https://www.oneM2M.org

1

http://www.oneM2M.org

Copyright Notification

(c) 2024, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSTDI,
TTA, TTC).

All rights reserved.

The copyright extends to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals
who have the appropriate degree of experience to understand and interpret its
contents in accordance with generally accepted engineering or other professional
standards and applicable regulations. No recommendation as to products or
vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMA-
TION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS
TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND
FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR
AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO
oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT
OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS
DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT
SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES
ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PRO-
VIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

1 Scope
The present document specifies several semantic functions for oneM2M functional
architecture [1] including basic resource procedures and functional descriptions.

2 References
2.1 Normative references
References are either specific (identified by date of publication and/or edition
number or version number) or nonspecific. For specific references, only the cited
version applies. For non-specific references, the latest version of the referenced
document (including any amendments) applies.

2

The following referenced documents are necessary for the application of the
present document.

• [1] oneM2M TS-0001: “Functional Architecture”.
• [2] W3C Recommendation: “SPARQL 1.1 Query Language”.
• [3] oneM2M TS-0004: “Service Layer Core Protocol Specification”.
• [4] W3C Recommendation 25 February 2014: “RDF 1.1 Concepts and

Abstract Syntax”.
• [5] oneM2M TS-0012: “Base Ontology”

2.2 Informative references
References are either specific (identified by date of publication and/or edition
number or version number) or nonspecific. For specific references, only the cited
version applies. For non-specific references, the latest version of the referenced
document (including any amendments) applies.

The following referenced documents are not necessary for the application of the
present document but they assist the user with regard to a particular subject
area.

• [i.1] W3C Editor’s Draft: “Semantic Sensor Network Ontology”. > NOTE:
Available at http://w3c.github.io/sdw/ssn/.

• [i.2] ETSI TS 103 264 (V1.1.1): “SmartM2M; Smart Appliances; Reference
Ontology and oneM2M Mapping”.

• [i.3] oneM2M TR-0033: “Study on Enhanced Semantic Enablement”.
• [i.4] oneM2M Drafting Rules. > NOTE: Available at http://www.onem2m.

org/images/files/oneM2M-Drafting-Rules.pdf.

3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

ACP Access Control Policy
ACR Access Control Rule
AE Application Entity
CRUD Create, Retrieve, Update, Delete
CSE Common Service Entity
CSF Common Service Function
IoT Internet of Things
IRI Internationalized Resource Identifier
JSON JavaScript Object Notation
MR Mashup Requestor
RDF Resource Description Framework
RH Resource Host
SAREF Smart Appliances REFerence ontology
SD Semantic Descriptor

3

http://w3c.github.io/sdw/ssn/
http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf
http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf

SEM Semantics
SGS Semantic Graph Store
SMF Semantic Mashup Function
SMI Semantic Mashup Instance
SMJP Semantic Mashup Job Profile
SPARQL SPARQL Protocol and RDF Query Language
SSN Semantic Sensor Network
URI Uniform Resource Identifier
URL Uniform Resource Locator
XML Extensible Markup Language

4 Conventions
The key words “Shall”, “Shall not”, “May”, “Need not”, “Should”, “Should not”
in this document are to be interpreted as described in the oneM2M Drafting
Rules [i.4].

5 Architectural Model and Concepts
The architectural model assumed in this specification is based on the generic
oneM2M architecture for the Common Service Layer specified in oneM2M TS-
0001 [1]. The core functionality supporting semantics resides at various CSEs,
providing services to the AEs via the Mca reference point and interacting with
other CSEs via the Mcc reference point.

The Semantics (SEM) CSF (see clause 6.2.14 in oneM2M TS-0001 [1]) is an
oneM2M Common Service Function (CSF) which enables semantic information
management and provides the related functionality based on this semantic
information. The functionality of this CSF is based on semantic descriptions and
implemented through the specialized resources and procedures described in this
specification. This functionality is also enabled by other, more generic, resources
and procedures described in oneM2M TS-0001 [1] and further referenced in this
specification. The main features of the SEM CSF are listed in clause 10.2.14 of
[1] and further detailed in clauses 6 and 7 of this specification. The SEM CSF
includes specialized functional blocks such as: SPARQL engine, repositories for
ontologies and semantic descriptions, which may be implemented via permanent
or temporary Semantic Graph Stores, etc.

4

6 Basic Resource Procedures
6.1 <semanticDescriptor> Operations
6.1.1 Introduction

The <semanticDescriptor> resource is used to store a semantic description
pertaining to a resource and potentially sub-resources. Such a description
may be provided according to ontologies. The semantic information is used
by the semantic functionalities of the oneM2M system and is also available to
applications or CSEs. For resource type description see [1] clause 9.6.30.

6.1.2 Create <semanticDescriptor>

This procedure shall be used for creating a <semanticDescriptor> resource.

Table 2: Table 6.1.2-1: <semanticDescriptor> CREATE

<semanticDescriptor>
CRE-
ATE <semanticDescriptor> CREATE
Associated
Refer-
ence
Point

Mca, Mcc and Mcc’

Information
in Re-
quest
mes-
sage

All parameters defined in oneM2M TS-0001 [1] table 8.1.2-2 apply
with the specific details for:
Content: The resource content shall provide the information as
defined in clause 9.6.30 in oneM2M TS-0001 [1]

Processing
at
Origi-
nator
before
send-
ing
Re-
quest

According to clause 10.1.2 in oneM2M TS-0001 [1]

Processing
at Re-
ceiver

The Hosting CSE shall follow the basic procedure according to clause
10.1.2 of [1], with the following specific details:
shall check that the descriptor attribute conforms to the syntax as
defined in the descriptorRepresentation attribute.
shall trigger the semantic validation process as specified in clause 7.10
if the validationEnable attribute of the <semanticDescriptor> resource
is set to true, and shall set the semanticValidated attribute of
<semanticDescriptor> resource according to the validation result.

5

<semanticDescriptor>
CRE-
ATE <semanticDescriptor> CREATE
Information
in Re-
sponse
mes-
sage

According to clause 10.1.2 in oneM2M TS-0001 [1]

Processing
at
Origi-
nator
after
receiv-
ing
Re-
sponse

According to clause 10.1.2 in oneM2M TS-0001 [1]

ExceptionsAccording to clause 10.1.2 in oneM2M TS-0001 [1]

6.1.3 Retrieve <semanticDescriptor>

This procedure shall be used for retrieving the attributes of a <semanticDescrip-
tor> resource.

Table 3: Table 6.1.3-1: <semanticDescriptor> RETRIEVE

<semanticDescriptor>
RETRIEVE <semanticDescriptor> RETRIEVE
Associated Reference Point Mca, Mcc and Mcc’.
Information in Request
message

All parameters defined in oneM2M TS-0001 [1]
table 8.1.2-2.

Processing at Originator
before sending Request

According to clause 10.1.3. in oneM2M TS-0001
[1]

Processing at Receiver According to clause 10.1.3 in oneM2M TS-0001
[1].

Information in Response
message

All parameters defined in oneM2M TS-0001 [1]
table 8.1.3-1 apply.

Processing at Originator
after receiving Response

According to clause 10.1.3 in oneM2M TS-0001
[1].

Exceptions According to clause 10.1.3 in oneM2M TS-0001
[1].

6

6.1.4 Update <semanticDescriptor>

This procedure shall be used for updating attributes of a <semanticDescriptor>
resource.

Table 4: Table 6.1.4-1: <semanticDescriptor> UPDATE

<semanticDescriptor>
UP-
DATE<semanticDescriptor> UPDATE
Associated
Ref-
er-
ence
Point

Mca, Mcc and Mcc’

Information
in
Re-
quest
mes-
sage

All parameters defined in oneM2M TS-0001 [1] table 8.1.2-2 apply with
the specific details for:
the Content request parameter which may contain the new descriptor
information in one of the following ways:
1) full representation of the descriptor attribute; or
2) partial representation of the descriptor attribute as described in
SPARQL statements [2] in the semanticOpExec attribute.

Processing
at
Orig-
ina-
tor
be-
fore
send-
ing
Re-
quest

According to clause 10.1.4 in oneM2M TS-0001 [1].

7

<semanticDescriptor>
UP-
DATE<semanticDescriptor> UPDATE
Processing
at
Re-
ceiver

The hosting CSE shall follow the basic procedure according to clause
10.1.4 in oneM2M TS-0001 [1], with the following specific details:
check if both semanticOpExec attribute and ontologyContent attribute
exist in the the Content request parameter, if so, return an error code;
shall update the descriptor attribute according to the execution result of
the SPARQL statements [2] in the semanticOpExec attribute, if it
presents in the Content request parameter;
shall check that the descriptor attribute conforms to the syntax as
defined in the descriptorRepresentation attribute, if it presents in the
Content request parameter.
shall trigger the semantic validation process as specified in clause 7.10 if
the validationEnable attribute of the <semanticDescriptor> resource is
set to true, and shall update the semanticValidated attribute of
<semanticDescriptor> resource according to the validation result.

Information
in
Re-
sponse
mes-
sage

According to clause 10.1.4 in oneM2M TS-0001 [1].

Processing
at
Orig-
ina-
tor
af-
ter
re-
ceiv-
ing
Re-
sponse

According to clause 10.1.4 in oneM2M TS-0001 [1].

ExceptionsAccording to clause 10.1.4 in oneM2M TS-0001 [1].

6.1.5 Delete <semanticDescriptor>

This procedure shall be used for deleting a <semanticDescriptor> resource.

8

Table 5: Table 6.1.5-1: _<semanticDescriptor> DELETE

<semanticDescriptor>
DELETE <semanticDescriptor> DELETE
Associated Reference Point Mca, Mcc and Mcc’
Information in Request
message

All parameters defined in table 8.1.2-2 in
oneM2M TS-0001 [1] apply

Processing at Originator
before sending Request

According to clause 10.1.5 in oneM2M TS-0001
[1]

Processing at Receiver According to clause 10.1.5 in oneM2M TS-0001
[1]

Information in Response
message

According to clause 10.1.5 in oneM2M TS-0001
[1]

Processing at Originator
after receiving Response

According to clause 10.1.5 in oneM2M TS-0001
[1]

Exceptions According to clause 10.1.5 in oneM2M TS-0001
[1]

6.2 <semanticFanOutPoint> Operations
6.2.1 Introduction

The <semanticFanOutPoint> resource is a virtual resource because it does not
have a representation. It is the child resource of a <group> resource and shall be
targeted only by RETRIEVE requests. When a request (for semantic discovery
or semantic query) is sent to the <semanticFanOutPoint> resource the host
uses the memberIDs attribute of the parent <group> resource to retrieve all the
related descriptors, then proceeds with the corresponding processing.

See clause 9.6.14a in oneM2M TS-0001 [1] for a full description of the resource
type. The use of <semanticFanOutPoint> for semantic resource discovery and
semantic query is further described in clause 7.4.

6.2.2 Retrieve <semanticFanOutPoint>

The RETRIVE operation on <semanticFanOutPoint> shall be used for two
purposes:

1. performing semantic resource discovery; and
2. performing semantic query.

The procedure below shall be used for performing a semantic discovery or a
semantic query procedure using the descriptor content of all member semantic
resources belonging to an existing <group> resource.

9

Table 6: Table 6.2.2-1: <semanticFanOutPoint> RETRIEVE for
Semantic Resource Discovery and Semantic Query

<semanticFanOutPoint>
RE-
TRIEVE<semanticFanOutPoint> RETRIEVE
Associated
Ref-
er-
ence
Point

Mca, Mcc and Mcc’

Information
in
Re-
quest
mes-
sage

According to clause 10.1.3 in oneM2M TS-0001 [1].

For the semantic query case, the request message shall include the
parameter Semantic Query Indicator , which shall not be included in the
request for semantic resource discovery.

Processing
at
Orig-
ina-
tor
be-
fore
send-
ing
Re-
quest

For the semantic resource discovery case, the Originator shall request a
semantic discovery to be performed using the content of the semantic
descriptors of all member resources belonging to an existing <group>
resource.

For the semantic query case, the Originator may discover various
<group> resources defining different explicit query scopes and select the
one having the desired query scope. Then, the Originator shall request a
semantic query to be performed using the semantic information of all
member resources belonging to this <group> resource.

The Originator may be an AE or CSE.
Processing
at
Re-
ceiver

The Receiver shall:
- Check if the Originator has RETRIEVE privilege in the
<accessControlPolicy> resource referenced by the members
AccessControlPolicyIDs in the parent <group> resource. In the case
members AccessControlPolicyIDs is not provided, the access control
policy defined for the parent <group> resource shall be used.
- Upon successful validation, obtain the URIs of all the member semantic
resources from the memberIDs attribute of the parent <group> resource.
- If there are semantic resources stored on different CSEs, individual
RETRIEVE requests are sent to each CSE for retrieving the descriptors,
otherwise the descriptor attributes are simply retrieved for all the
semantic resources hosted locally. All semantic descriptors are accessed
based on the respective access control policies.
- Once all of the related descriptor attributes have been retrieved, the
SPARQL request is being executed on the combined content.

10

<semanticFanOutPoint>
RE-
TRIEVE<semanticFanOutPoint> RETRIEVE
Information
in
Re-
sponse
mes-
sage

The result of the SPARQL request executed on the content retrieved
from the semantic resources_._

Processing
at
Orig-
ina-
tor
af-
ter
re-
ceiv-
ing
Re-
sponse

According to clause 10.1.3 in oneM2M TS-0001 [1].

ExceptionsAccording to clause 10.1.3 in oneM2M TS-0001 [1].

6.3 <semanticMashupJobProfile> Operations
6.3.1 Introduction

The <semanticMashupJobProfile> resource represents a Semantic Mashup Job
Profile (SMJP). The <semanticMashupJobProfile> resource type description is
specified in the clause 9.6.53 in oneM2M TS-0001 [1].

A <semanticMashupJobProfile> resource can be provisioned to a Hosting CSE
which provides semantic mashup function; alternatively, an AE or CSE can
request to create <semanticMashupJobProfile> resource at the Hosting CSE.
Once a <semanticMashupJobProfile> resource is provisioned or created at the
Hosting CSE, other oneM2M CSEs/AEs, which act as Mashup Requestors, can
discover, retrieve, update, or delete it based on the requirements.

Figure 6.3.1-1 illustrates a generic procedure (e.g. Create/Retrieve/Update/Delete)
to operate on a <semanticMashupJobProfile> resource.

Editor’s Note: Replace with PlantUML Diagram

6.3.2 Create <semanticMashupJobProfile>

This procedure shall be used for creating a <semanticMashupJobProfile> resource
as described in Table 6.3.21.

11

Figure 1: Figure 6.3.1-1: Procedures for operating a <semanticMashupJobPro-
file> resource

12

Table 7: Table 6.3.2-1: <semanticMashupJobProfile> CREATE

<semanticMashupJobProfile>
CREATE <semanticMashupJobProfile> CREATE
Associated
Reference
Point

Mca, Mcc and Mcc’.

Information
in
Request
message

All parameters defined in Table 8.1.2-3 in oneM2M TS-0001 [1]
apply with the specific details for:
Content : : The resource content shall provide the information
about an <semanticMashupJobProfile> resource (e.g. attribute
values) as described in the clause 9.6.53 in oneM2M TS-0001 [1].

Processing
at Origi-
nator
before
sending
Request

According to clause 10.1.1.1 in oneM2M TS-0001 [1].

Processing
at
Receiver

According to clause 10.1.1.1 in oneM2M TS-0001 [1].

Information
in
Response
message

All parameters defined in Table 8.1.3-1 in oneM2M TS-0001 [1]
apply with the specific details for:
Content : Address of the created <semanticMashupJobProfile>
resource, according to clause 10.1.1.1 in oneM2M TS-0001 [1].

Processing
at Origi-
nator
after
receiving
Response

According to clause 10.1.1.1 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.1.1 in oneM2M TS-0001 [1].

6.3.3 Retrieve <semanticMashupJobProfile>

This procedure shall be used for retrieving the attributes of a <semantic-
MashupJobProfile> resource as described in Table 6.3.31.

13

Table 8: Table 6.3.3-1: <semanticMashupJobProfile> RETRIEVE

<semanticMashupJobProfile>
RE-
TRIEVE <semanticMashupJobProfile> RETRIEVE
Associated
Reference
Point

Mca, Mcc and Mcc’.

Information
in
Request
message

All parameters defined in Table 8.1.2-3 in oneM2M TS-0001 [1]
apply with the specific details for:
Content : void.

Processing
at Origi-
nator
before
sending
Request

According to clause 10.1.2 in oneM2M TS-0001 [1].

Processing
at
Receiver

The Receiver shall verify the existence (including Filter Criteria
checking, if it is given) of the target resource or the attribute and
check if the Originator has appropriate privileges to retrieve
information stored in the resource/attribute. Otherwise clause
10.1.2 in oneM2M TS-0001 [1] applies.

Information
in
Response
message

All parameters defined in Table 8.1.3-1 in oneM2M TS-0001 [1]
apply with the specific details for:
Content : attributes of the <semanticMashupJobProfile>
resource as defined in the clause 9.6.53 in oneM2M TS-0001 [1].

Processing
at Origi-
nator
after
receiving
Response

According to clause 10.1.2 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.2 in oneM2M TS-0001 [1].
In addition, a timer has expired. The Receiver responds with an
error.

6.3.4 Update <semanticMashupJobProfile>

This procedure as described in Table 6.3.41 shall be used to update an existing
<semanticMashupJobProfile> resource, e.g. an update to its inputDescriptor
attribute.

14

Table 9: Table 6.3.4-1: <semanticMashupJobProfile> UPDATE

<semanticMashupJobProfile>
UPDATE <semanticMashupJobProfile> UPDATE
Associated
Reference
Point

Mca, Mcc and Mcc’.

Information
in Request
message

All parameters defined in Table 8.1.2-3 in oneM2M TS-0001 [1]
apply with the specific details for:
Content : attributes of the <semanticMashupJobProfile>
resource as defined in the clause 9.6.53 in oneM2M TS-0001 [1] to
be updated.

Processing
at
Originator
before
sending
Request

According to clause 10.1.3 in oneM2M TS-0001 [1].

Processing
at Receiver

According to clause 10.1.3 in oneM2M TS-0001 [1].

Information
in
Response
message

According to clause 10.1.3 in oneM2M TS-0001 [1].

Processing
at
Originator
after
receiving
Response

According to clause 10.1.3 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.3 in oneM2M TS-0001 [1].

6.3.5 Delete <semanticMashupJobProfile>

This procedure as described in Table 6.3.51 shall be used to delete an existing
<semanticMashupJobProfil e> resource.

15

Table 10: Table 6.3.5-1: <semanticMashupJobProfile> DELETE

<semanticMashupJobProfile>
DELETE<semanticMashupJobProfile> DELETE
Associated
Ref-
er-
ence
Point

Mca, Mcc and Mcc’.

Information
in Re-
quest
mes-
sage

All parameters defined in Table 8.1.2-3 in oneM2M TS-0001 [1] apply.

Processing
at
Origi-
nator
be-
fore
send-
ing
Re-
quest

According to clause 10.1.4.1 in oneM2M TS-0001 [1].

Processing
at Re-
ceiver

According to clause 10.1.4.1 in oneM2M TS-0001 [1]:
If the <semanticMashupJobProfile> to be deleted has smiID attribute
and the smiID attribute has a value, the Receiver notifies each
<semanticMashupInstance> resource as included in the smiID attribute
of the removal of the <semanticMashupJobProfile> since those
<semanticMashupInstanc e> resources use this
<semanticMashupJobProfile>.
If the <semanticMashupJobProfile> to be deleted has
<semanticMashupInstance> child resources, all those
<semanticMashupInstanc e> child resources shall be removed
accordingly.

Information
in Re-
sponse
mes-
sage

According to clause 10.1.4.1 in oneM2M TS-0001 [1].

16

<semanticMashupJobProfile>
DELETE<semanticMashupJobProfile> DELETE
Processing
at
Origi-
nator
after
re-
ceiv-
ing
Re-
sponse

According to clause 10.1.4.1 in oneM2M TS-0001 [1].

ExceptionsAccording to clause 10.1.4.1 in oneM2M TS-0001 [1].

6.4 <semanticMashupInstance> Operations
6.4.1 Introduction

<semanticMashupInstance> models and represents a Semantic Mashup Instance
(SMI) resource. <semanticMashupInstance>_ resource type is specified in the
clause 9.6.54 in oneM2M TS-0001 [1].

A CSE/AE as a Mashup Requestor can request to create <semanticMashupIn-
stance> resources at another oneM2M CSE which implements the semantic
mashup function. Each created <semanticMashupInstance> resource corre-
sponds to a semantic mashup job profile (i.e. a <semanticMashupJobProfile>
resource); in other words, how the <semanticMashupInstance> resource should
execute the mashup operation to calculate the mashup result is specified in the
corresponding <semanticMashupJobProfile> resource. Note that the <semantic-
MashupInstance> and its corresponding <semanticMashupJobProfile> resources
may be placed at the same CSE or at different CSEs, and the smjpID attribute
of the <semanticMashupInstance> allows locating the corresponding <seman-
ticMashupJobProfile> resource. If the <semanticMashupInstance> resource has
a <semanticMashupResult> as its child resource, the Mashup Requestor may
use it to retrieve the mashup result.

Figure 6.4.1-1 illustrates the procedural flow to operate a <semanticMashupIn-
stance> resource (e.g. Create/Retrieve/Update/Delete a <semanticMashupIn-
stance> resource).

Figure 6.4.1-1: Procedures for Operating a <semanticMashupInstance>
Resource

Figure 2: Figure 6.4.1-1: Procedures for Operating a <semanticMashupInstance>
Resource

Editor’s Note: Replace with PlantUML Diagram

17

6.4.2 Create <semanticMashupInstance>

This procedure shall be used for creating a <semanticMashupInstance> resource
as described in Table 6.4.21.

Table 11: Table 6.4.2-1: <semanticMashupInstance> CREATE

<semanticMashupInstance>
CRE-
ATE<semanticMashupInstance> CREATE
Associated
Ref-
er-
ence
Point

Mca, Mcc and Mcc’.

Information
in
Re-
quest
mes-
sage

All parameters defined in Table 8.1.2-3 in oneM2M TS-0001 [1] apply with
the specific details for:
Content : The resource content shall provide the information about a
<semanticMashupInstance> resource (e.g. attribute values) as described in
the clause 9.6.54 in oneM2M TS-0001 [1].

Processing
at
Orig-
i-
na-
tor
be-
fore
send-
ing
Re-
quest

According to clause 10.1.1.1 in oneM2M TS-0001 [1]:
- If the Originator knows the identifier or URI of each mashup member, it
can include the value of mashupMember in the Request message.

18

<semanticMashupInstance>
CRE-
ATE<semanticMashupInstance> CREATE
Processing
at
Re-
ceiver

According to clause 10.1.1.1 in oneM2M TS-0001 [1]:
- The Receiver shall first check if the corresponding
<semanticMashupJobProfile> as denoted by smjpID attribute exists or not.
If it does not exist, the Receiver shall not create the
<semanticMashupInstance> and shall report an error
(e.g. “<semanticMashupJobProfile> does not exist”) in the Response
message to the Originator. If it exists, the Receiver shall retrieve its content.
- The Receiver shall check if smjpInputParameter included in the Request
message meets the input parameter requirement as specified by the
inputDescripto r attribute of corresponding <semanticMashupJobProfile>.
If it does not meet the requirement, the Receiver shall not create the
<semanticMashupInstance> and shall report an error
(e.g. “smjpInputParameter” does not meet the requirement”) in the
Response message to the Originator.
- According to the memberFilter attribute of the retrieved
<semanticMashupJobProfile>, the Receiver extracts the SPARQL query
contained in memberFilter and use it to discover and determine mashup
member resources for the <semanticMashupInstance> to be created.
- Dependent on the memberStoreType attribute contained in the Request
message, the Receiver maintains each member resource in different ways. If
memberStoreType =“URI Only”, the Receiver creates the mashupMember
attribute containing the URIs of the determined member resources. If
memberStoreType =“URI and Value”, the Receiver creates the
mashupMember attribute, retrieves the content value of each member
resource and then stores both the identifier and the content value of each
member resource in the mashupMember attribute.
- Depending on the resultGenType attribute contained in the Request
message, the Receiver prepares to execute the corresponding semantic
mashup job profile as follows:

-If resultGenType =” When SMI Is Created”, the Receiver retrieves the
content value of each member resource if not retrieved yet; then it executes
mashup functions as specified by the <semanticMashupJobProfile> and
generates semantic mashup result, which shall be stored in the
<semanticMashupResult> child resource.

- If resultGenType =“When A Mashup Requestor Requests”, there is no
further processing at the Receiver.

- If resultGenType =“Periodically”, the Receiver shall set up a timer
according to the periodForResultGen attribute contained in the Request
message. When the timer expires, the Receiver shall retrieve the content
value of each member resource and re-generate the mashup result; then it
renews the timer.

- If resultGenType =“When A Mashup Member Is Updated”, there is no
further processing at the Receiver.

19

<semanticMashupInstance>
CRE-
ATE<semanticMashupInstance> CREATE
Information
in
Re-
sponse
mes-
sage

All parameters defined in Table 8.1.3-1 in oneM2M TS-0001 [1] apply with
the specific details for:
Content : Address of the created <semanticMashupInstance> resource
and address of created <semanticMashupResult> resource if any, according
to clause 10.1.1.1 in oneM2M TS-0001 [1].

Processing
at
Orig-
i-
na-
tor
af-
ter
re-
ceiv-
ing
Re-
sponse

According to clause 10.1.1.1 in oneM2M TS-0001 [1].

ExceptionsAccording to clause 10.1.1.1 in oneM2M TS-0001 [1].

6.4.3 Retrieve <semanticMashupInstance>

This procedure shall be used for retrieving the attributes of a <semantic-
MashupInstance> resource as described in Table 6.4.31.

Table 12: Table 6.4.3-1: <semanticMashupInstance> RETRIEVE

<semanticMashupInstance>
RETRIEVE

<semanticMashupInstance>
RETRIEVE

Associated Reference Point Mca, Mcc and Mcc’.
Information in Request message All parameters defined in Table 8.1.2-3

in oneM2M TS-0001 [1] apply with
the specific details for:
Content : void.

Processing at Originator before
sending Request

According to clause 10.1.2 in oneM2M
TS-0001 [1].

20

<semanticMashupInstance>
RETRIEVE

<semanticMashupInstance>
RETRIEVE

Processing at Receiver The Receiver shall verify the existence
(including Filter Criteria checking, if
it is given) of the target resource or
the attribute and check if the
Originator has appropriate privileges
to retrieve information stored in the
resource/attribute. Otherwise clause
10.1.2 in oneM2M TS-0001 [1] applies.

Information in Response message All parameters defined in Table 8.1.3-1
in oneM2M TS-0001 [1] apply with
the specific details for:
Content : attributes of the
<semanticMashupInstance> resource
as defined in the clause 9.6.54 in
oneM2M TS-0001 [1].

Processing at Originator after
receiving Response

According to clause 10.1.2 in oneM2M
TS-0001 [1].

Exceptions According to clause 10.1.2 in oneM2M
TS-0001 [1].

6.4.4 Update <semanticMashupInstance>

This procedure as described in Table 6.4.4-1 shall be used to update an existing
<semanticMashupInstance>, e.g. an update to its memberStoreType attribute.

Table 13: Table 6.4.4-1: <semanticMashupInstance> UPDATE

<semanticMashupInstance> UPDATE <semanticMashupInstance> UPDATE
Associated Reference Point Mca, Mcc and Mcc’.
Information in Request message All parameters defined in Table 8.1.2-3

in oneM2M TS-0001 [1] apply with
the specific details for:
Content : attributes of the
<semanticMashupInstance> resource
as defined the clause 9.6.54 in
oneM2M TS-0001 [1] to be updated.

Processing at Originator before
sending Request

According to clause 10.1.3 in oneM2M
TS-0001 [1].

21

<semanticMashupInstance> UPDATE <semanticMashupInstance> UPDATE
Processing at Receiver According to clause 10.1.3 in oneM2M

TS-0001 [1]:
- If the updated attribute in the
Request message is
smjpInputParameter , the Receiver
shall recalculate the semantic mashup
result using the new values of input
parameters.
- If the mashupMember attribute is
updated (e.g. an existing mashup
member is not available anymore and
a new mashup member is identified)
and resultGenType =“When A
Mashup Member Is Updated”, the
Hosting CSE shall re-calculate the
semantic mashup result using the new
mashup members.
- If the updated attribute in the
Request message is memberStoreType ,
the Receiver needs to change the way
to maintain mashup member resources.
For example, if memberStoreType is
updated from “URI Only” to “URI
and Value”, the Receiver needs to
retrieve the content value of each
mashup member resource and store
the values together with URI in
mashupMember attribute. If
memberStoreTy pe is updated from
“URI and Value” to “URI Only”, the
Receiver needs mashupMember
attribute to only maintain the
identifier of each mashup member.
- If the updated attribute in the
Request message is resultGenType ,
the Receiver changes the way to
calculate/generate the semantic
mashup result accordingly.

Information in Response message According to clause 10.1.3 in oneM2M
TS-0001 [1].

Processing at Originator after
receiving Response

According to clause 10.1.3 in oneM2M
TS-0001 [1].

22

Exceptions According to clause 10.1.3 in oneM2M
TS-0001 [1].

6.4.5 Delete <semanticMashupInstance>

This procedure as described in Table 6.4.5-1 shall be used to delete an existing
<semanticMashupInstance>.

Table 14: Table 6.4.5-1: <semanticMashupInstance> DELETE

<semanticMashupInstance> DELETE <semanticMashupInstance> DELETE
Associated Reference Point Mca, Mcc and Mcc’.
Information in Request message All parameters defined in Table 8.1.2-3

in oneM2M TS-0001 [1] apply.
Processing at Originator before
sending Request

According to clause 10.1.4.1 in
oneM2M TS-0001 [1].

Processing at Receiver According to clause 10.1.4.1 in
oneM2M TS-0001 [1].
- In addition, The Receiver removes
this <semanticMashupInstance> from
the smiID attribute of the
corresponding
<semanticMashupJobProfile>.

Information in Response message According to clause 10.1.4.1 in
oneM2M TS-0001 [1].

Processing at Originator after
receiving Response

According to clause 10.1.4.1 in
oneM2M TS-0001 [1].

Exceptions According to clause 10.1.4.1 in
oneM2M TS-0001 [1].

6.5 <mashup> Operations
6.5.1 Introduction

<mashup> is a virtual resource because it does not have a representation. It
is the child resource of a <semanticMashupInstance> resource. When a RE-
TRIEVE operation is sent to the <mashup> resource, it triggers a calculation
and generation of the mashup result based on its parent resource <semantic-
MashupInstance> .

The <mashup> resource type is specified in oneM2M TS-0001 [1], clause 9.6.55.

Only Retrieve operation shall be allowed on a <mashup> virtual resource. A
Create, an Update, or a Delete operation on a <mashup> virtual resource shall
not be supported.

23

6.5.2 Retrieve <mashup>

This procedure shall be used for triggering the CSE which hosts the <seman-
ticMashupInstance> to recalculate mashup results and returning the mashup
result back to the requestor (e.g. an AE) of this retrieve request as described in
Table 6.5.2-1.

Table 15: Table 6.5.2-1: <mashup> RETRIEVE

<mashup>
RE-
TRIEVE <mashup> RETRIEVE
Associated
Refer-
ence
Point

Mca, Mcc and Mcc’.

Information
in
Request
message

All parameters defined in Table 8.1.2-3 in oneM2M TS-0001 [1] apply
with the specific details for:
To: <semanticMashupInstance>/<mashup>
Content : void.

Processing
at Origi-
nator
before
sending
Request

According to clause 10.1.2 in oneM2M TS-0001 [1].

Processing
at Re-
ceiver

The Receiver shall check if the Originator has appropriate privileges.
Otherwise clause 10.1.2 in oneM2M TS-0001 [1] applies:
The Hosting CSE triggers the recalculation of semantic mashup
result for <mashup> ’s parent resource <semanticMashupInstance>.
The recalculated mashup result shall be stored in the
<semanticMashupInstance>’s child resource
<semanticMashupResult>.

Information
in Re-
sponse
message

All parameters defined in Table 8.1.3-1 in oneM2M TS-0001 [1] apply
with the specific details for:
Content : the mashup result, if indicated in the request.

Processing
at Origi-
nator
after re-
ceiving
Re-
sponse

According to clause 10.1.2 in oneM2M TS-0001 [1].

24

<mashup>
RE-
TRIEVE <mashup> RETRIEVE
ExceptionsAccording to clause 10.1.2 in oneM2M TS-0001 [1].

In addition: a timer has expired. The Receiver responds with an
error.

6.6 <semanticMashupResult > Operations
6.6.1 Introduction

<semanticMashupResult> resource stores the mashup result. It is the child
resource of a <semanticMashupInstance> resource. A <semanticMashupResult>
resource shall be automatically generated by a Hosting CSE when it executes
a semantic mashup operation on a <semanticMashupInstance> resource. The
< semanticMashupResult > resource type is specified in the clause 9.6.56 in
oneM2M TS-0001 [1].

Figure 6.6.1-1 illustrates the procedure to operate a <semanticMashupResult>
resource. A <semanticMashupResult> resource shall be automatically created
when a Hosting CSE executes semantic mashup operation on a <semantic-
MashupInstance> resource. Only Retrieve and Delete operations shall be al-
lowed on a <semanticMashupResult> resource. Detail descriptions are given in
following clauses.

Editor’s Note: Replace with PlantUML Diagram

6.6.2 Retrieve <semanticMashupResult>

This procedure shall be used for retrieving the attributes of a <semantic-
MashupResult> resource as described in Table 6.6.2-1.

Table 16: Table 6.6.2-1: <semanticMashupResult> RETRIEVE

<semanticMashupResult>
RE-
TRIEVE <semanticMashupResult> RETRIEVE
Associated
Reference
Point

Mca, Mcc and Mcc’.

Information
in
Request
message

All parameters defined in Table 8.1.2-3 in oneM2M TS-0001 [1]
apply with the specific details for:
Content : void.

25

<semanticMashupResult>
RE-
TRIEVE <semanticMashupResult> RETRIEVE
Processing
at Origi-
nator
before
sending
Request

According to clause 10.1.2 in oneM2M TS-0001 [1].

Processing
at
Receiver

The Receiver shall verify the existence (including Filter Criteria
checking, if it is given) of the target resource or the attribute and
check if the Originator has appropriate privileges to retrieve
information stored in the resource/attribute. Otherwise clause
10.1.2 in oneM2M TS-0001 [1] applies.

Information
in
Response
message

All parameters defined in Table 8.1.3-1 in oneM2M TS-0001 [1]
apply with the specific details for:
Content : attributes of the <semanticMashupResult> resource as
defined in the clause 9.6.56 in oneM2M TS-0001 [1].

Processing
at Origi-
nator
after
receiving
Response

According to clause 10.1.2 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.2 in oneM2M TS-0001 [1].
In addition: a timer has expired. The Receiver responds with an
error.

6.6.3 Delete <semanticMashupResult>

This procedure as described in Table 6.6.3-1 shall be used to delete an existing
<semanticMashupResult> resource.

Table 17: Table 6.6.3-1: <semanticMashupResult> DELETE

<semanticMashupResult>
DELETE <semanticMashupResult> DELETE
Associated Reference Point Mca, Mcc and Mcc’.
Information in Request
message

All parameters defined in Table 8.1.2-3 in
oneM2M TS-0001 [1] apply.

Processing at Originator
before sending Request

According to clause 10.1.4.1 in oneM2M TS-0001
[1].

Processing at Receiver According to clause 10.1.4.1 in oneM2M TS-0001
[1].

26

<semanticMashupResult>
DELETE <semanticMashupResult> DELETE
Information in Response
message

According to clause 10.1.4.1 in oneM2M TS-0001
[1].

Processing at Originator
after receiving Response

According to clause 10.1.4.1 in oneM2M TS-0001
[1].

Exceptions According to clause 10.1.4.1 in oneM2M TS-0001
[1].

6.7 <ontologyRepository> Operations
6.7.1 Introduction

The <ontologyRepository> represents an ontology repository which may contain
any number of managed ontologies represented as <ontology> child resources
(see clause 6.8). The ontology repository may further provide semantic validation
function by the <semanticValidation> virtual child resource (see clause 6.9).

6.7.2 Create <ontologyRepository>

This procedure shall be used for creating a <ontologyRepository> resource.

Table 18: Table 6.7.2-1: <ontologyRepository> CREATE

<ontologyRepository>
CREATE <ontologyRepository> CREATE
Associated
Reference
Point

Mca, Mcc and Mcc’

Information
in Request
message

All parameters defined in table 8.1.2-2 in oneM2M TS-0001 [1]
apply with the specific details for:
Content: The resource content shall provide the information as
defined in the clause 9.6.50 in oneM2M TS-0001 [1].

Processing
at
Originator
before
sending
Request

According to clause 10.1.2 in oneM2M TS-0001 [1].

Processing
at Receiver

According to clause 10.1.2 in oneM2M TS-0001 [1].
The hosting CSE shall also create the <semanticValidation>
virtual child-resource if the addressed <ontologyRepository>
resource is successfully created.

27

<ontologyRepository>
CREATE <ontologyRepository> CREATE
Information
in Response
message

According to clause 10.1.2 in oneM2M TS-0001 [1].

Processing
at
Originator
after
receiving
Response

According to clause 10.1.2 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.2 in oneM2M TS-0001 [1].

6.7.3 Retrieve <ontologyRepository>

This procedure shall be used for retrieving <ontologyRepository> resource.

Table 19: Table 6.7.3-1: <ontologyRepository> RETRIEVE

<ontologyRepository>
RETRIEVE <ontologyRepository> RETRIEVE
Associated Reference Point Mca, Mcc and Mcc’.
Information in Request
message

All parameters defined in table 8.1.2-2 in
oneM2M TS-0001 [1].

Processing at Originator
before sending Request

According to clause 10.1.3 in oneM2M TS-0001
[1].

Processing at Receiver According to clause 10.1.3 in oneM2M TS-0001
[1].

Information in Response
message

All parameters defined in table 8.1.3-1 in
oneM2M TS-0001 [1] apply.

Processing at Originator
after receiving Response

According to clause 10.1.3 in oneM2M TS-0001
[1].

Exceptions According to clause 10.1.3 in oneM2M TS-0001
[1].

6.7.4 Update <ontologyRepository>

This procedure shall be used for updating an existing <ontologyRepository>
resource.

28

Figure 3: Figure 6.6.1-1: Procedures for operating a <semanticMashupResult>
Resource

29

Table 20: Table 6.7.4-1: <ontologyRepository> UPDATE

<ontologyRepository>
UPDATE <ontologyRepository> UPDATE
Associated Reference Point Mca, Mcc and Mcc’.
Information in Request
message

All parameters defined in table 8.1.2-2 in
oneM2M TS-0001 [1].

Processing at Originator
before sending Request

According to clause 10.1.4 in oneM2M TS-0001
[1].

Processing at Receiver According to clause 10.1.4 in oneM2M TS-0001
[1].

Information in Response
message

According to clause 10.1.4 in oneM2M TS-0001
[1].

Processing at Originator
after receiving Response

According to clause 10.1.4 in oneM2M TS-0001
[1].

Exceptions According to clause 10.1.4 in oneM2M TS-0001
[1].

6.7.5 Delete <ontologyRepository>

This procedure shall be used for deleting an existing <ontologyRepository>
resource.

Table 21: Table 6.7.5-1: <ontologyRepository> DELETE

<ontologyRepository>
DELETE <ontologyRepository> DELETE
Associated
Reference
Point

Mca, Mcc and Mcc’

Information
in Request
message

All parameters defined in table 8.1.2-2 apply in oneM2M
TS-0001 [1].

Processing at
Originator
before
sending
Request

According to clause 10.1.5 in oneM2M TS-0001 [1].

Processing at
Receiver

According to clause 10.1.5 in oneM2M TS-0001 [1].
The hosting CSE shall also delete the <semanticValidation>
virtual child-resource if the addressed <ontologyRepository>
resource is successfully created.

Information
in Response
message

According to clause 10.1.5 in oneM2M TS-0001 [1].

30

<ontologyRepository>
DELETE <ontologyRepository> DELETE
Processing at
Originator
after
receiving
Response

According to clause 10.1.5 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.5 in oneM2M TS-0001 [1].

6.8 <ontology> Operations
6.8.1 Introduction

Each <ontology> resource represents an ontology under management in the
oneM2M system. It may contain the full representation or the IRI reference of
the managed ontology. It is managed by simple CRUD operations as ordinary
resource or by more advanced SPARQL operations (contained in the payload of
the Update and Retrieve) at the granularity of RDF-triple level.

6.8.2 Create <ontology>

This procedure shall be used for deleting an existing <ontology> resource.

Table 22: Table 6.8.2-1:<ontology> CREATE

<ontology>
CREATE <ontology> CREATE
Associated
Reference
Point

Mca, Mcc and Mcc’

Information
in Request
message

All parameters defined in table 8.1.2-2 in oneM2M TS-0001 [1]
apply with the specific details for:
Content: The resource content shall provide the information as
defined in clause 9.6.51 in oneM2M TS-0001 [1].

Processing
at
Originator
before
sending
Request

According to clause 10.1.2 in oneM2M TS-0001 [1].

Processing
at Receiver

According to clause 10.1.2 in oneM2M TS-0001 [1] with the
specific details as follows:
The Hosting CSE shall check that the ontologyContent attribute
conforms to the syntax as defined in the ontologyFormat
attribute.

31

<ontology>
CREATE <ontology> CREATE
Information
in Response
message

According to clause 10.1.2 in oneM2M TS-0001 [1].

Processing
at
Originator
after
receiving
Response

According to clause 10.1.2 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.2 in oneM2M TS-0001 [1].

6.8.3 Retrieve <ontology>

This procedure shall be used for deleting an existing_<ontology>_ resource.

Table 23: Table 6.8.3-1: :<ontology>_ RETRIEVE

<ontology> RETRIEVE <ontology> RETRIEVE
Associated Reference Point Mca, Mcc and Mcc’.
Information in Request
message

All parameters defined in table 8.1.2-2 in
oneM2M TS-0001 [1].

Processing at Originator
before sending Request

According to clause 10.1.3 in oneM2M TS-0001
[1].

Processing at Receiver According to clause 10.1.3 in oneM2M TS-0001
[1].

Information in Response
message

All parameters defined in table 8.1.3-1 in
oneM2M TS-0001 [1] apply.

Processing at Originator
after receiving Response

According to clause 10.1.3 in oneM2M TS-0001
[1].

Exceptions According to clause 10.1.3 in oneM2M TS-0001
[1].

6.8.4 Update <ontology>

This procedure shall be used for deleting an existing_<ontology>_ resource.

32

Table 24: Table 6.8.4-1: <ontology> UPDATE

<ontology>
UP-
DATE<ontology> UPDATE
Associated
Ref-
er-
ence
Point

Mca, Mcc and Mcc’

Information
in
Re-
quest
mes-
sage

All parameters defined in table 8.1.2-2 in oneM2M TS-0001 [1] shall
apply with the specific details for the Content request parameter which
may contain the new ontology information in one of the following ways:
the full representation of the new ontology triples in the ontologyContent
attribute; or
the new IRI of the ontology in the ontologyContent attribute; or
the partial representation of the new ontology as described in SPARQL
statements [2] in the semanticOpExec attribute in the case that the
ontologyFormat is not ‘IRI’.

Processing
at
Orig-
ina-
tor
be-
fore
send-
ing
Re-
quest

According to clause 10.1.4 in oneM2M TS-0001 [1].

Processing
at
Re-
ceiver

According to clause 10.1.4 in oneM2M TS-0001 [1] with the specific
details as follows:
Check if both semanticOpExec attribute and ontologyContent attribute
exist in the the Content request parameter, if so, return an error code.
In the case that the Content request parameter contains partial
representation of the new ontology as described in SPARQL statements
[2] in the semanticOpExec attribute, and the ontologyFormat is not set
to ‘IRI’, the Hosting CSE shall update the ontologyContent attribute
according to the execution result of the SPARQL statements [2].
In the case that the Content request parameter contains the
ontologyContent attribute, the Hosting CSE shall check that the
ontologyContent attribute conforms to the syntax as defined in the
ontologyFormat attribute.

33

<ontology>
UP-
DATE<ontology> UPDATE
Information
in
Re-
sponse
mes-
sage

According to clause 10.1.4 in oneM2M TS-0001 [1].

Processing
at
Orig-
ina-
tor
af-
ter
re-
ceiv-
ing
Re-
sponse

According to clause 10.1.4 in oneM2M TS-0001 [1].

ExceptionsAccording to clause 10.1.4 in oneM2M TS-0001 [1].

6.8.5 Delete <ontology>

Table 25: Table 6.8.5-1: <ontology> DELETE

__< ontology > DELETE __< ontology > DELETE
Associated Reference Point Mca, Mcc and Mcc’
Information in Request
message

All parameters defined in table 8.1.2-2 in
oneM2M TS-0001 [1] apply.

Processing at Originator
before sending Request

According to clause 10.1.5 in oneM2M TS-0001
[1].

Processing at Receiver According to clause 10.1.5 in oneM2M TS-0001
[1].

Information in Response
message

According to clause 10.1.5 in oneM2M TS-0001
[1].

Processing at Originator
after receiving Response

According to clause 10.1.5 in oneM2M TS-0001
[1].

Exceptions According to clause 10.1.5 in oneM2M TS-0001
[1].

6.8.6 Semantic query on <ontology> resource via Retrieve

34

Table 26: Table 6.8.6-1: Semantic query on <ontology> resource
via RETRIEVE

Semantic
query
on
<ontol-
ogy>
re-
source
via
RE-
TRIEVE Semantic query on <ontology> resource via RETRIEVE
Associated
Refer-
ence
Point

Mca, Mcc and Mcc’

Information
in Re-
quest
mes-
sage

All parameters defined in table 8.1.2-2 in oneM2M TS-0001 [1] apply.
In addition, the semantic query request shall be issued as a
RETRIEVE operation with:
A SPARQL query statement in the semanticsFilter condition tag of
the Filter Criteria request parameter.
A Result Content request parameter with the value set to
’semantic-content’.
A Semantic Query Indicator request parameter with the value set
to ’TRUE’.
See more details in clause 7.5.

Processing
at
Origi-
nator
before
send-
ing
Re-
quest

According to clause 10.1.3 in oneM2M TS-0001 [1].

Processing
at Re-
ceiver

According to clause 10.1.3 in oneM2M TS-0001 [1] with the following
specific details:
The hosting CSE shall execute the SPARQL query statement against
the content attribute of the <ontology> resource and return the
SPARQL result to the Originator. If the content attribute contains
IRI of an external ontology, the hosting CSE shall retrieve the
referenced ontology following the IRI and perform the SPARQL query
against it. If the content attribute contains the RDF triples, the
SPARQL query can be performed directly against it.

35

Semantic
query
on
<ontol-
ogy>
re-
source
via
RE-
TRIEVE Semantic query on <ontology> resource via RETRIEVE
Information
in Re-
sponse
mes-
sage

According to clause 10.1.3 in oneM2M TS-0001 [1].

Processing
at
Origi-
nator
after
receiv-
ing
Re-
sponse

According to clause 10.1.3 in oneM2M TS-0001 [1].

ExceptionsAccording to clause 10.1.3 in oneM2M TS-0001 [1].

Semantic query defined in clause 7.5 shall be used for retrieving the semantic
information (triples) from an <ontology> resource.

Some SPARQL query statement examples are given as follows:

1. get all classes of an ontology:
• SELECT ?subject WHERE { ?subject rdfs:subClassOf+ owl:Thing }

2. get all object | data properties of ontology:
• SELECT ?subject WHERE { {?subject rdf:type+ owl:ObjectProperty

} UNION {?subject rdf:type+ owl:DatatypeProperty } }
3. get direct subclasses of class A:

• SELECT ?subject WHERE { ?subject rdfs:subClassOf saref:Command
}

4. get also transitive subclasses class A:
• e.g. if information from instances of class A is requested, all subclasses

of class A also need to be included as they are also instances of class
A;

• SELECT ?subject WHERE { ?subject rdfs:subClassOf +
saref:Command }

36

5. get all the superclasses of class A:
• e.g. if for derived ontologies the class of the base ontology needs to

be found from which the class is derived, for example to apply rules
defined for the base ontology, e.g. for creating a resource structure;

• SELECT ?object WHERE { saref:SetAbsoluteLevelCommand
rdfs:subClassOf + ?object }

6. get all object | data properties where class A is in the domain:
• e.g. to find out what properties an instance of class A can possibly

have;
• SELECT ?subject ?object WHERE { ?subject rdfs:domain

saref:Service }
7. get all object | data properties where class A is in the range:

• SELECT ?subject ?object WHERE { ?subject rdfs:range
saref:Command }

8. get all sub-properties of a property A:
• e.g. if information concerning property A is requested all sub-

properties of A also need to be included;
• SELECT ?subject WHERE { ?subject rdfs:subPropertyOf

om:singular_unit
9. get classes that are equivalent to class A:

• SELECT ?class WHERE {{ saref:Device owl:equivalentClass ?class}
UNION {?class owl:equivalentClass saref:Device}}

Editor’s note: correct the code in step 8 (missing closing bracket)

6.9 <semanticValidation> Operations
6.9.1 Introduction

The <semanticValidation> resource, as a virtual resource of <ontologyReposi-
tory> resource, is used for validating an input <semanticDescriptor> resource
sent from an authorized originator.

6.9.2 Create <semanticValidation>

The <semanticValidation> resource shall be created when the parent <ontolo-
gyRepository> resource is created by the hosting CSE. The Create operation is
not applicable via Mca, Mcc or Mcc’.

6.9.3 Retrieve <semanticValidation>

The Retrieve operation is not applicable for <semanticValidation>.

6.9.4 Update <semanticValidation>

This procedure shall be used for validating a <semanticDescriptor> resource
contained in the Update request against its referenced ontology. The semantic

37

validation process shall also take into account linked <semanticDescriptor>
resources (if any) of the <semanticDescriptor> resource in the request.

Table 27: Table 6.9.4-1: <semanticValidation> UPDATE

<semanticValidation>
UP-
DATE <semanticValidation> UPDATE
Associated
Ref-
er-
ence
Point

Mca, Mcc and Mcc’.

Information
in
Re-
quest
mes-
sage

All parameters defined in table 8.1.2-3 in oneM2M TS-0001 [1]. Besides,
the resource representation in the Content parameter of the request
message shall be set as the <semanticDescriptor> resource to be
validated.

Processing
at
Orig-
ina-
tor
be-
fore
send-
ing
Re-
quest

According to clause 10.1.4 in oneM2M TS-0001 [1].

Processing
at
Re-
ceiver

The Recevier shall follow the basic procedure according to clause 10.1.4
in oneM2M TS-0001 [1], with the following specific details:
retrieve the semantic description (i.e. the triples in descriptor attribute
of), the URI to the referenced ontology in ontologyRef attribute and
potential links to other linked <semanticDescriptor> resources from
the <semanticDescriptor> resource to be validated;
retrieve the referenced ontology, any linked <semanticDescriptor>
resources and the referenced ontologies of the linked
<semanticDescriptor> resources_;_
perform semantic validation according to clause 7.10.

Information
in Re-
sponse
mes-
sage

According to clause 10.1.4 in oneM2M TS-0001 [1].

38

<semanticValidation>
UP-
DATE <semanticValidation> UPDATE
Processing
at
Orig-
ina-
tor
after
re-
ceiv-
ing
Re-
sponse

According to clause 10.1.4 in oneM2M TS-0001 [1].
In case the Originator is the hosting CSE of the <semanticDescriptor>
resource being validated, the Originator shall update the
semanticValidated attribute (true or false) of the hosted
<semanticDescriptor> resource according to the received response code
accordingly.

ExceptionsAccording to clause 10.1.4 in oneM2M TS-0001 [1].

6.9.5 Delete <semanticValidation>

The <semanticValidation> resource shall be deleted when the parent <ontolo-
gyRepository> resource is deleted by the hosting CSE. The Delete operation is
not applicable via Mca, Mcc or Mcc’.

6.10 <ontologyMapping> Operations
6.10.1 Introduction

The ontology mapping task shall be performed by the Create or Update operation
against an <ontologyMapping> resource on a Hosting CSE. A Retrieve operation
against the same <ontologyMapping> resource shall be used to get the result of
ontology mapping. A Delete operation against a <ontologyMapping> resource
shall follow the basic procedure as specified in clause [1].

6.10.2 Create <ontologyMapping> (Ontology Mapping)

This procedure shall be used for performing the ontology mapping task by
creating a <ontologyMapping> resource as described in Table 6.10.2-1. Detailed
message flows are described in Figure 6.10.2-1.

39

Table 28: Table 6.10.2-1: <ontologyMapping > CREATE

<ontologyMapping>
CRE-
ATE <ontologyMapping> CREATE
Associated
Ref-
er-
ence
Point

Mca, Mcc and Mcc’.

Information
in
Re-
quest
mes-
sage

All parameters defined in [1] table 8.1.2-2 apply with the specific details
for:
Content : The resource content shall provide the information about an
<ontologyMapping> resource (e.g. attribute values) as described in [1].

Processing
at
Orig-
ina-
tor
be-
fore
send-
ing
Re-
quest

According to clause 10.1.2 in [1].

Processing
at
Re-
ceiver

The receiver shall follow the basic procedure according to clause 10.1.2 of
[1], with the following specific details:
Determine the source <ontology> and target <ontology> resources to be
mapped according to the sourceOntology and targetOntology attributes
provided in the request;
Determine the ontology mapping method according to the mapping
method description including the mappingPolicy and mappingAlgorithm
Links attributes provided in the request;
Retrieve the source <ontology> and target <ontology> resources from a
remote CSE if needed;
Retrieve the <ontologyMappingAlgorithm> resources from a remote CSE
if needed;
Create the ontology mapping relationships between the source
<ontology> and the target <ontology> ;
Store the mapping result in the <ontologyMapping> resource in the
successful case.

40

<ontologyMapping>
CRE-
ATE <ontologyMapping> CREATE
Information
in
Re-
sponse
mes-
sage

All parameters defined in table 8.1.3-1 in [1] shall apply with the specific
details for:
Content : Address of the created <ontologyMapping> resource,
according to clause 10.1.2 in [1].

Processing
at
Orig-
ina-
tor
af-
ter
re-
ceiv-
ing
Re-
sponse

According to clause 10.1.2 in [1].

ExceptionsAccording to clause 10.1.2 in [1].

Editor’s note: Replace with PlantUML Diagram

The normal message flow Create <ontologyMapping> procedure is described as
follows:

1. The hosting CSE (e.g. an oneM2M platform) receives an ontology mapping
request from an Originator (e.g. an oneM2M application) in the form of a
Create operation against an <ontologyMapping> resource. The request
shall contain the resourceID s of the source and target <ontology> re-
sources indicated by the sourceOntology and targetOntology attributes in
the <ontologyMapping> resource. It shall also contain the information
of mapping method description including the mapping policy and the
mapping algorithms indicated by the attributes of mappingPolicy and
mappingAlgorithmLinks respectively.

2. The hosting CSE shall determine the source and target ontologies according
to the resourceID s of the source and target <ontology> resources provided
in the request. It shall also determine the ontology mapping method
according to the information of mapping method description provided
in the request. Specifically, the hosting CSE shall first determine the
mapping algorithm policy (single, multiple or traversal) according to the
mappingPolicy attribute provided in the request. Then it shall determine
the mapping algorithm(s) to be used according to the determined mapping

41

Figure 4: Figure 6.10.2-1: The ontology mapping procedure by Create/Update
a <ontologyMapping> resource

42

algorithm policy and the available mapping algorithm(s) provided by the
mappingAlgorithmLinks attribute, and shall perform the ontology mapping
process according to Table 6.10.2-2.

Table 6.10.2-2: ontology mapping process according to different
mapping policies and the provided mapping algorithms

mappingPolicymappingAlgorithmLinks
ontology mapping process by the hosting
CSE

singlecontains the resourceID
(s) of one or more
existing <ontologyMap-
pingAlgorithm>
resources, or the
resourceID of an existing
<ontologyMappingAlgo-
rithmRepository>
resource.

Decide to use a single ontology mapping
algorithm for the ontology mapping
between the source and target ontologies.
If more than one
<ontologyMappingAlgorithm> resource is
provided by the mappingAlgorithmLinks ,
or contained in the referenced
<ontologyMappingAlgorithmRepository>
resource, the hosting CSE may decide to
use one of the provided algorithms
according to its local policy.

multiplecontains the resourceID s
of two or more existing
<ontologyMappingAlgo-
rithm> resources of
different types, or the
resourceID of an existing
<ontologyMappingAlgo-
rithmRepository>
resource which contains
two or more <ontolo-
gyMappingAlgorithm>
resources of different
types.

Decide to use two or more different types
of mapping algorithms (based on the
algorithmType attribute of the
<ontologyMappingAlgorithm> resource)
for the ontology mapping between the
source and target ontologies.
The hosting CSE may decide to use a
subset (at least two types) of the provided
algorithms according to its local policy.
If the number of the types of the provided
algorithms is less than two, the hosting
CSE shall reject the request with an error.

traversalcontains the resourceID
(s) of one or more
existing <ontologyMap-
pingAlgorithm>
resources, or the
resourceID of an existing
<ontologyMappingAlgo-
rithmRepository>
resource.

Decide to use all the provided ontology
mapping algorithms in a traversal way for
the ontology mapping between the source
and target ontologies.

Note 1: Any combination of mappingPolicy and mappingAlgo-
rithmLinks not covered by this table shall be considered as an

43

exceptional case, and the hosting CSE shall reject the request
with an error. Note 2: For a pre-configured algorithm already
stored in the system, the <ontologyMappingAlgorithm> resource
may not contain the executable of the algorithm. In this case, the
hosting CSE may invoke the algorithm from the system locally
according to the resourceName or resourceID attribute. Note 3:
If more than one algorithms are used, the final ontology mapping
result shall be a union of all the results from each algorithm.

3. The hosting CSE may need to retrieve the source and/or target <ontol-
ogy> resources from a remote CSE the sourceOntology and targetOntology
attributes if they are not hosted locally.

4. The hosting CSE may need to retrieve the used <mappingAlgorithm>
resources from a remote CSE according to the mappingAlgorithmLinks
attribute if they are not hosted locally.

5. The hosting CSE shall create the ontology mapping relationships between
the source and target ontologies according to the determined mapping
method, and shall store the resulted mapping relationships in the <ontolo-
gyMapping> resource.

Figure 6.10.2-2 shows an example of the ontology mapping between the source
ontology (Ontology-A) and the target ontology (Ontology-B). Assuming the
mappingPolicy=multiple and the mappingAlgorithmLinks points to two <on-
tologyMappingAlgorithm> resources which are a “linguistic-feature extraction
algorithm” and an “external resource acquisition algorithm” respectively. The
hosting CSE first performs the “linguistic-feature extraction algorithm” against
Ontology-A and Ontology-B, and generates three mapping relationships (as
formatted by Triple#1, Triple#2 and Triple#3 below). The hosting CSE then
performs the “external resource acquisition algorithm” with the support from
external resources (e.g. the WordNet dictionary), and generates a fourth mapping
relationship (as Triple#4 below).

• RDF Triple #1: Ontology-A:Thing owl:equivalentClass Ontology-B:Thing
• RDF Triple #2: Ontology-A:Devices owl:equivalentClass Ontology-

B:Device
• RDF Triple #3: Ontology-A:LightSensor owl:equivalentClass Ontology-

B:Light_Sensor
• RDF Triple #4: Ontology-A:Switch_off owl:equivalentProperty Ontology-

B:Turn_off

The mapping relationships (RDF Triple #1/2/3/4) are stored in the mappin-
gResult attribute of the <ontologyMapping> resource to be created.

The hosting CSE shall return the successful response to the Originator with the
resourceID of the created <ontologyMapping> resource.

44

Figure 5: Figure 6.10.2-2: Example of the mapping result between ontology A
and ontology B

45

6.10.3 Retrieve <ontologyMapping> (Get the ontology mapping result)

The ontology mapping result can be retrieved by the Retrieve operation against
an <ontologyMapping> resource as described in Table 6.10.3-1. The mapping
result is contained in the mappingResult attribute. No resource specific process
is required.

Table 30: Table 6.10.3-1: <ontologyMapping> RETRIEVE

<ontologyMapping>
RE-
TRIEVE <ontologyMapping> RETRIEVE
Associated
Reference
Point

Mca, Mcc and Mcc’.

Information
in Request
message

All parameters defined in [1] table 8.1.2-2.

Processing
at
Originator
before
sending
Request

According to clause 10.1.3 in [1].

Processing
at
Receiver

The receiver shall follow the basic procedure according to clause
10.1.2 of [1].

Information
in
Response
message

All parameters defined in table 8.1.3-1 apply with the specific
details for:
Content : attributes of the <ontologyMapping> resource as
specified in [1]. The resulted mapping relationships are contained
in the mappingResult attribute of the <ontologyMapping>
resource.

Processing
at
Originator
after
receiving
Response

According to clause 10.1.3 in [1].

Exceptions According to clause 10.1.3 in [1].

6.10.4 Update <ontologyMapping> (Ontology Mapping)

The ontology mapping task may also be performed by the Update operation
against an <ontologyMapping> resource. This operation shall be used to generate

46

new mapping results based upon an existing configuration of the <ontologyMap-
ping> with only necessary modifications. The procedure is similar to the Create
operation described in clause 6.10.2.

Table 31: Table 6.10.4-1: <ontologyMapping> UPDATE

<ontologyMapping>
UP-
DATE<ontologyMapping> UPDATE
Associated
Ref-
er-
ence
Point

Mca, Mcc and Mcc’.

Information
in
Re-
quest
mes-
sage

All parameters defined in [1] table 8.1.2-2 apply with the specific details
for:
Content : The resource content shall provide the information about an
<ontologyMapping> resource (e.g. attribute values) as described in [1].

Processing
at
Orig-
ina-
tor
be-
fore
send-
ing
Re-
quest

According to clause 10.1.4 in [1].

47

<ontologyMapping>
UP-
DATE<ontologyMapping> UPDATE
Processing
at
Re-
ceiver

The receiver shall follow the basic procedure according to clause 10.1.4 of
[1], with the following specific details:
Determine the source <ontology> and target <ontology> resources to be
mapped according to the sourceOntology and targetOntology attributes
provided in the request;
Determine the ontology mapping method according to the mapping
method description including the mappingPolicy and mappingAlgorithm
Links attributes provided in the request;
Retrieve the source <ontology> and target <ontology> resources from a
remote CSE if needed;
Retrieve the <mappingAlgorithm> resources from a remote CSE if
needed;
Create the ontology mapping relationships between the source
<ontology> and the target <ontology> ;
Store the mapping result in the <ontologyMapping> resource in the
successful case.

Information
in
Re-
sponse
mes-
sage

According to clause 10.1.4 in [1].

Processing
at
Orig-
ina-
tor
af-
ter
re-
ceiv-
ing
Re-
sponse

According to clause 10.1.4 in [1].

ExceptionsAccording to clause 10.1.4 in [1].

6.10.5 Delete <ontologyMapping>

This procedure shall be used for deleting a <ontologyMapping> resource.

48

Table 32: Table 6.10.5-1: <ontologyMapping> DELETE

__<
ontologyMapping>
DELETE **__<** ontologyMapping> DELETE
Associated Reference Point Mca, Mcc and Mcc’
Information in Request
message

All parameters defined in table 8.1.2-2 in [1]
apply

Processing at Originator
before sending Request

According to clause 10.1.5 in [1]

Processing at Receiver According to clause 10.1.5 in [1]
Information in Response
message

According to clause 10.1.5 in [1]

Processing at Originator after
receiving Response

According to clause 10.1.5 in [1]

Exceptions According to clause 10.1.5 in [1]

6.11 <ontologyMappingAlgorithm> Procedure
Ontology mapping algorithms are represented as <ontologyMappingAlgorithm>
resources under an <ontologyMappingAlgorithmRepository> resource. They can
be added, updated, retrieved and deleted by the CRUD operation against a
<ontologyMappingAlgorithm> resource following the basic procedures as specified
in clause 10.1 in [1]. There is no resource-specific process to be defined.

6.12 <ontologyMappingAlgorithmRepository> Procedure
The CRUD operation against a <ontologyMappingAlgorithm Repository> re-
source following the basic procedures as specified in clause 10.1 in [1]. There is
no resource-specific process to be defined.

6.13 <semanticRuleRepository> Operations
6.13.1 Introduction

A <semanticRuleRepository> resource is a child resource of the <CSEBase>
resource. The <semanticRuleRepository> resource may have one or multiple
<reasoningRules> child resources to represent different sets of reasoning rules in
the oneM2M system. A reasoning initiator can create <reasoningJobInstance>
child resources of a <semanticRuleRepository> resource to initiate desired
reasoning operations.

6.13.2 Create <semanticRuleRepository>

This procedure is used for creating a <semanticRuleRepository> resource as
described in Table 6.13.2-1.

49

Table 33: Table 6.13.2-1: <semanticRuleRepository> CREATE

<semanticRuleRepository>
CREATE <semanticRuleRepository> CREATE**
Associated
Reference
Point

Mca, Mcc and Mcc’

Information
in Request
message

All parameters defined in TS-0001 [1] table 8.1.2-3 apply with
the specific details for:
Content : The resource content provides the information as
defined in the resource definition of <semanticRuleRepository>
resource.

Processing
at
Originator
before
sending
Request

According to clause 10.1.2 in oneM2M TS-0001 in [1].

Processing
at Receiver

According to clause 10.1.2 in oneM2M TS-0001 in [1].

Information
in Response
message

All parameters defined in table 8.1.3-1 in [1] apply with the
specific details for:
Content : Address of the created <semanticRuleRepository>
resource, according to clause 10.1.2 in [1].

Processing
at
Originator
after
receiving
Response

According to clause 10.1.2 in oneM2M TS-0001 in [1].

Exceptions According to clause 10.1.2 in oneM2M TS-0001 in [1].

6.13.3 Retrieve <semanticRuleRepository>

This procedure is used for retrieving the attributes of a <semanticRuleReposi-
tory> resource as described in Table 6.13.3-1.

50

Table 34: Table 6.13.3-1: <semanticRuleRepository> RETRIEVE

<semanticRuleRepository>
RETRIEVE <semanticRuleRepository> RETRIEVE
Processing at
Originator
before sending
Request

According to clause 10.1.3 in oneM2M TS-0001 in [1].

Processing at
Receiver

According to clause 10.1.3 in oneM2M TS-0001 in [1].

Processing at
Originator after
receiving
Response

According to clause 10.1.3 in oneM2M TS-0001 in [1].

Exceptions According to clause 10.1.3 in oneM2M TS-0001 in [1].
Information in
Request
message

All parameters defined in Table 8.1.2-3 in [1] apply.

Information in
Response
message

All parameters defined in Table 8.1.3-1 in [1] apply with the
specific details for:
Content : Attributes of the <semanticRuleRepository>
resource.

Associated
Reference Point

Mca, Mcc and Mcc’.

6.13.4 Update <semanticRuleRepository>

This procedure is used for updating the attributes of a <semanticRuleRepository>
resource as described in Table 6.X.4-1.

Editor note: replace the “x” in the table reference with the correct number

Table 35: Table 6.13.4-1: <semanticRuleRepository> UPDATE

<semanticRuleRepository>
UPDATE <semanticRuleRepository> UPDATE
Associated
Reference Point

Mca, Mcc and Mcc’

Information in
Request
message\

All parameters defined in Table 8.1.2-3 in [1] apply with the
specific details for:
Content : Attributes of the <semanticRuleRepository>
resource to be updated.

51

<semanticRuleRepository>
UPDATE <semanticRuleRepository> UPDATE
Processing at
Originator
before sending
Request

According to clause 10.1.4 in oneM2M TS-0001 in [1].

Processing at
Receiver

According to clause 10.1.4 in oneM2M TS-0001 in [1].

Information in
Response
message

According to clause 10.1.4 in oneM2M TS-0001 in [1].

Processing at
Originator after
receiving
Response

According to clause 10.1.4 in oneM2M TS-0001 in [1].

Exceptions According to clause 10.1.4 in oneM2M TS-0001 in [1].

6.13.5 Delete <semanticRuleRepository>

This procedure is used for deleting a <semanticRuleRepository> resource as
described in Table 6.13.5-1.

Table 36: Table 6.13.5-1: <semanticRuleRepository> DELETE

<semanticRuleRepository>
DELETE <semanticRuleRepository> DELETE_
Associated Reference Point Mca, Mcc and Mcc’
Information in Request
message

All parameters defined in table 8.1.2-3 in [1]
apply.

Processing at Originator
before sending Request

According to clause 10.1.5 in oneM2M
TS-0001 in [1].

Processing at Receiver According to clause 10.1.5 in oneM2M
TS-0001 in [1].

Information in Response
message

According to clause 10.1.5 in oneM2M
TS-0001 in [1].

Processing at Originator after
receiving Response

According to clause 10.1.5 in oneM2M
TS-0001 in [1].

Exceptions According to clause 10.1.5 in oneM2M
TS-0001 in [1].

52

6.14 <reasoningRules> Operations
6.14.1 Introduction

A <reasoningRules> resource can be used to store a set of related reasoning
rules (e.g. for supporting a particular application). A <reasoningRules> resource
is a child resource of the <semanticRuleRepository> resource. By performing
the CRUD operations on the <reasoningRules> resources, various reasoning
rules (e.g., user-defined reasoning rules based on business logic) can be created,
discovered, retrieved, updated and deleted inside the oneM2M system.

6.14.2 Create <reasoningRules>

This procedure is used for creating a <reasoningRules> resource as described in
Table 6.14.2-1.

Table 37: Table 6.14.2-1: <reasoningRules> CREATE

<reasoningRules>
CREATE <reasoningRules> CREATE
Associated
Reference
Point

Mca, Mcc and Mcc’

Information
in Request
message

All parameters defined in Table 8.1.2-3 in TS-0001 [1] apply
with the specific details for:
Content : The resource content provides the information as
defined in the resource definition of <reasoningRules> resource.

Processing
at
Originator
before
sending
Request

According to clause 10.1.2 in oneM2M TS-0001 in [1].

Processing
at Receiver

According to clause 10.1.2 in oneM2M TS-0001 in [1].

Information
in Response
message

All parameters defined in table 8.1.3-1 in [i.3] apply with the
specific details for:
Content : Address of the created <reasoningRules> resource,
according to clause 10.1.2 in [i.3].

Processing
at
Originator
after
receiving
Response

According to clause 10.1.2 in oneM2M TS-0001 in [1].

Exceptions According to clause 10.1.2 in oneM2M TS-0001 in [1].

53

6.14.3 Retrieve <reasoningRules>

This procedure is used for retrieving the attributes of a <reasoningRules>
resource as described in Table 6.14.3-1.

Table 38: Table 6.14.3-1: <reasoningRules> RETRIEVE

<reasoningRules>
RETRIEVE <reasoningRules> RETRIEVE
Associated
Reference Point

Mca, Mcc and Mcc’.

Information in
Request message

All parameters defined in table 8.1.2-3 in [1] apply.

Processing at
Originator
before sending
Request

According to clause 10.1.3 in oneM2M TS-0001 in [1].

Processing at
Receiver

According to clause 10.1.3 in oneM2M TS-0001 in [1].

Information in
Response
message

All parameters defined in Table 8.1.3-1 in [1] apply with the
specific details for:
Content : Attributes of the <reasoningRules> resource.

Processing at
Originator after
receiving
Response

According to clause 10.1.3 in oneM2M TS-0001 in [1].

Exceptions According to clause 10.1.3 in oneM2M TS-0001 in [1].

6.14.4 Update <reasoningRules>

This procedure is used for updating the attributes of a <reasoningRules> resource
as described in Table 6.14.4-1.

Table 39: Table 6.14.4-1: <reasoningRules> UPDATE

<reasoningRules>
UPDATE <reasoningRules> UPDATE
Associated
Reference Point

Mca, Mcc and Mcc’

Information in
Request
message\

All parameters defined in Table 8.1.2-3 in [1] apply with the
specific details for:
Content : Attributes of the <reasoningRules> resource to
be updated.

54

<reasoningRules>
UPDATE <reasoningRules> UPDATE
Processing at
Originator
before sending
Request

According to clause 10.1.4 in oneM2M TS-0001 in [1].

Processing at
Receiver

According to clause 10.1.4 in oneM2M TS-0001 in [1].

Information in
Response
message

According to clause 10.1.4 in oneM2M TS-0001 in [1].

Processing at
Originator after
receiving
Response

According to clause 10.1.4 in oneM2M TS-0001 in [1].

Exceptions According to clause 10.1.4 in oneM2M TS-0001 in [1].

6.14.5 Delete <reasoningRules>

This procedure is used for deleting a <reasoningRules> resource as described in
table 6.14.5-1.

Table 40: Table 6.14.5-1: <reasoningRules> DELETE

<reasoningRules> DELETE <reasoningRules> DELETE
Associated Reference Point Mca, Mcc and Mcc’
Information in Request
message

All parameters defined in Table 8.1.2-3 in [1]
apply.

Processing at Originator
before sending Request

According to clause 10.1.5 in oneM2M
TS-0001 in [1].

Processing at Receiver According to clause 10.1.5 in oneM2M
TS-0001 in [1].

Information in Response
message

According to clause 10.1.5 in oneM2M
TS-0001 in [1].

Processing at Originator after
receiving Response

According to clause 10.1.5 in oneM2M
TS-0001 in [1].

Exceptions According to clause 10.1.5 in oneM2M
TS-0001 in [1].

6.15 <reasoningJobInstance> Operations
6.15.1 Introduction

A Reasoning Initiator (RI), such as an AE or CSE, may trigger two types of
reasoning operations. One type is a “one-time” reasoning operation. This is

55

applicable to the case where a reasoning operation can be executed over a Fact
Set (FS) and a Rule Set (RS) that may not change over time. In comparison, the
other type is a “continuous” reasoning operation. The second type is applicable
to the cases where the input FS and RS for reasoning may change over time,
and accordingly the previously inferred knowledge may not be valid anymore.
Therefore, new reasoning is executed over the latest version of FS and RS in
order to generate up-to-date inferred knowledge.

A <reasoningJobInstance> resource represents a specific reasoning job instance
for enabling the two types of reasoning operations. A RI initiates a desired
reasoning operation by creating a <reasoningJobInstance> resource as a child
resource of a <semanticRuleRepository> resource.

6.15.2 Create <reasoningJobInstance>

This procedure is used for creating a <reasoningJobInstance> resource as de-
scribed in Table 6.15.2-1.

Table 41: Table 6.15.2-1: <reasoningJobInstance> CREATE

<reasoningJobInstance> CREATE <reasoningJobInstance> CREATE
Associated Reference Point Mca, Mcc and Mcc’
Information in Request message All parameters defined in [1] table

8.1.2-3 apply with the specific details
for:
Content: The resource content
provides the information as defined in
the resource definition of
<reasoningJobInstance> resource.

Processing at Originator before
sending Request

According to clause 10.1.2 in oneM2M
TS-0001 in [1].

56

<reasoningJobInstance> CREATE <reasoningJobInstance> CREATE
Processing at Receiver The Receiver follows the basic

procedure according to clause 10.1.4 in
oneM2M TS-0001 [1], with the
following specific details:

1. The receiver first retrieves the facts
from the resources referred to by the
factSet attribute. For example,

- If a referred resource is a type of
<semanticDescriptor> resource, the
RDF triples included in the descriptor
attribute will be collected.

- If a referred resource is a type of
<ontology> resource, the data
included in the ontologyContent
attribute will be collected.

2. The receiver retrieves all the related
reasoning rules for the resources
referred to by the ruleSet attribute.
For example,

- If a referred resource is a
<reasoningRules> resource, the rules
included in the ruleRepresentation
attribute will be collected.

3. The receiver includes the retrieved
facts and rules from the previous
steps, as well as optional facts/rules
based on local policies, as inputs for
the semantic reasoning operation. The
receiver performs semantic reasoning
processing using these inputs and
produces the reasoning result and
stores it in the result Representation
attribute of the created
<reasoningJobInstance> resource.

4. If the created
<reasoningJobInstance> resource
represents a continuous reasoning
operation (i.e., the reasoningType
attribute is set to “continuous”),
subsequent reasoning processing will
be automatically triggered and
performed according to the values of
reasoningMode and reasoningPeriod
attributes and the
resultRepresentation attribute will be
overwritten with the latest reasoning
result.\

57

<reasoningJobInstance> CREATE <reasoningJobInstance> CREATE
Information in Response message All parameters defined in table 8.1.3-1

in [1] apply with the specific details
for:
Content : Address of the created
<reasoningJobInstance> resource,
according to clause 10.1.2 in [1].

Processing at Originator after
receiving Response

According to clause 10.1.2 in oneM2M
TS-0001 in [1].

Exceptions According to clause 10.1.2 in oneM2M
TS-0001 in [1].

6.15.3 Retrieve <reasoningJobInstance>

This procedure is used for retrieving the attributes of a <reasoningJobInstance>
resource as described in Table 6.15.3-1.

Table 42: Table 6.15.3-1: <reasoningJobInstance> RETRIEVE

<reasoningJobInstance>
RETRIEVE <reasoningJobInstance> RETRIEVE
Associated
Reference Point

Mca, Mcc and Mcc’.

Information in
Request message

All parameters defined in table 8.1.2-3 in [1] apply.

Processing at
Originator before
sending Request

According to clause 10.1.3 in oneM2M TS-0001 in [1].

Processing at
Receiver

According to clause 10.1.3 in oneM2M TS-0001 in [1].

Information in
Response
message

All parameters defined in table 8.1.3-1 in [i.3] apply with
the specific details for:
Content : Attributes of the <reasoningJobInstance>
resource.

Processing at
Originator after
receiving
Response

According to clause 10.1.3 in oneM2M TS-0001 in [1].

Exceptions According to clause 10.1.3 in oneM2M TS-0001 in [1].

6.15.4 Update <reasoningJobInstance>

This procedure is used for updating the attributes of a <reasoningJobInstance>
resource as described in Table 6.15.4-1.

58

Table 43: Table 6.15.4-1: <reasoningJobInstance> UPDATE

<reasoningJobInstance> UPDATE <reasoningJobInstance> UPDATE
Associated Reference Point Mca, Mcc and Mcc’
Information in Request message\ All parameters defined in table 8.1.2-3

in [1] apply with the specific details
for:
Content : Attributes of the
<reasoningJobInstance> to be
updated.

Processing at Originator before
sending Request

According to clause 10.1.4 in oneM2M
TS-0001 in [1].

Processing at Receiver According to clause 10.1.4 in oneM2M
TS-0001 in [1].

Information in Response message According to clause 10.1.4 in oneM2M
TS-0001 in [1].

Processing at Originator after
receiving Response

According to clause 10.1.4 in oneM2M
TS-0001 in [1].

Exceptions According to clause 10.1.4 in oneM2M
TS-0001 in [1].

6.15.5 Delete <reasoningJobInstance>

This procedure is used for deleting a <reasoningJobInstance> resource as de-
scribed in Table 6.15.5-1.

Table 44: Table 6.15.5-1: <reasoningJobInstance> DELETE

<reasoningJobInstance>
DELETE <reasoningJobInstance> DELETE
Associated Reference Point Mca, Mcc and Mcc’
Exceptions According to clause 10.1.5 in oneM2M

TS-0001 in [1].
Information in Request
message

All parameters defined in table 8.1.2-3 in [1]
apply.

Information in Response
message

According to clause 10.1.5 in oneM2M
TS-0001 in [1].

Processing at Originator after
receiving Response

According to clause 10.1.5 in oneM2M
TS-0001 in [1].

Processing at Originator
before sending Request

According to clause 10.1.5 in oneM2M
TS-0001 in [1].

Processing at Receiver According to clause 10.1.5 in oneM2M
TS-0001 in [1].

59

7 Functional Descriptions
7.1 Overview
This clause specifies functional operations of semantic functions including access
control, semantics annotation, semantic filtering and discovery, semantic queries
and query scope, semantics reasoning, semantics mashup, semanticsbased data
analytics, ontology management, and semantics validation. Some of these
functional operations are based on the basic resource procedures as specified in
clause 6.

7.2 Access Control
7.2.1 Direct ACP control via semantic graph store

7.2.1.1 Introduction When realizing semantic functionalities and operations
(e.g. semantic resource discovery or semantic query), a centralized Semantic
Graph Store (SGS) can be used in the system to store RDF triples which are
collected from the <semanticDescriptor> resources distributed in the resource
tree. However, oneM2M uses <accessControlPolicy> resources to define Access
Control Policies (ACP) and those resources are hosted in the resource tree and
referred/used by other resources through accessControlPolicyIDs attribute. In
other words, any resource accesses (e.g. CRUD or discovery) to a specific resource
shall be compliant to certain access control policies as specified by the accessCon-
trolPolicyIDs attribute of this resource. Since <semanticDescriptor> resources
have their own access control policies as defined in the accesscontrolPolicyIDs
attribute, semantic operations to be executed directly on the RDF triples stored
at the SGS shall follow those access control policies in the sense that RDF triples
from certain <semanticDescriptor> resources shall not be used or involved in a
semantic operation processing if it is not allowed by the corresponding access
control policies.

Figure 7.2.1.1-1 gives an example of an access control policy for two <seman-
ticDescriptor> resources, where there are two access control policies (i.e. <ac-
cessControlPolicy1> and <accessControlPolicy2>). The access to <semanticDe-
scriptor1> is controlled by <accessControlPolicy1> and <accessControlPolicy2>
, while the access to <semanticDescriptor2> is only controlled by <accessCon-
trolPolicy2> .

In direct ACP control via semantic graph store, access control for any semantic
operation (e.g. semantic resource discovery, semantic query, etc.) shall be directly
enforced in the SGS. For this purpose, the following types of semantic triples shall
be generated according to the oneM2M resource tree (i.e. <semanticDescriptor>
and <accessControlPolicy> resources) and added to the SGS before the semantic
operation is executed at the SGS; in addition, those four types of semantic triples
shall be synchronized with the oneM2M resource tree (i.e. changes on or related
to <semanticDescriptor> and <accessControlPolicy> resources):

60

Figure 6: Figure 7.2.1.1-1: Example of access control policy for <semanticDe-
scriptor>

61

• SD Original Triples: RDF triples or other semantic representation con-
tained in the descriptor attribute of a <semanticDescriptor> resource. In
addition, the relationship between a <semanticDescriptor> resource and
its accessControlPolicyIDs shall be represented in a semantic form and
stored in the SGS.

• SD Relationship Triples: RDF triples or other semantic representation used
to describe the belonging relationship between each SD Original Triple
(i.e. contained in the descriptor attribute of a <semanticDescriptor>
resource) and the corresponding <semanticDescriptor> resource.

• ACP-SD Binding Triples: RDF triples or other semantic representation
used to describe which <accessControlPolicy> shall be applied to which
<semanticDescriptor> (i.e. the binding relationship between a <seman-
ticDescriptor> resource and its accessControlPolicyIDs attribute). For
oneM2M, such binding relationship shall be obtained from the resource
<semanticDescriptor> ’s accessControlPolicyIDs attribute.

• ACP Triples: RDF triple or other semantic representation used to describe
ACP policies/rules (as defined in <accessControlPolicy> resources) for
semantic resources (e.g. <semanticDescriptor>).

Overall, direct ACP control via the SGS shall consist of the following tasks:

• Task 1: Store SD Original Triples in the SGS. Generate SD Relationship
Triples, store them in the SGS. This task is detailed in clause 7.2.1.2.

• Task 2: Generate ACP-SD Binding Triples and ACP Triples; store them
in the SGS. This task is detailed in clause 7.2.1.3.

• Task 3 : Conduct semantic operations with direct ACP control in the
SGS. Semantic operations are conducted with the selected semantic triples
which are associated with the Access Control Rules allowing the Originator
to operate (which is based on the work of Task 1 and Task 2). This task is
detailed in clause 7.2.1.4.

• Task 4 : Synchronize ACP Triples, ACP-SD Binding Triples, SD Rela-
tionship Triples, and SD Original Triples as stored in the SGS with any
updated <semanticDescriptor> and/or <accessControlPolicies> resources
in the oneM2M resource tree. This task is detailed in clause 7.2.1.5.

7.2.1.2 Create SD relationship triples Access control policies for a <se-
manticDescriptor> resource have been defined in its accesscontrolPolicyIDs
attribute. In other words, the granularity for defining ACP is on a resource-
level in the sense that all the RDF triples stored in the descriptor attribute of
the <semanticDescriptor> resource should be compliant to the same ACP as
specified by the accessControlPolicyIDs attribute of this <semanticDescriptor>
resource. However, when those RDF triples (i.e. SD Original Triples) are copied
to the SGS, they are not stored under any resource/attribute anymore which is
different than the way oneM2M resource tree works. Therefore, a way is needed
to re-represent the association relationship between a SD Original Triple and
its <semanticDescriptor> resource in SGS in order to perform the same ACP

62

enforcement directly in the SGS. In other words, SD Relationship Triples shall
be generated and stored in the SGS.

In order to do so, an internal ontology (referred to as Semantic Descriptor
Ontology) with two classes semanticDescriptor and atomDescription, and several
properties describedIn , hasSubject hasObject and hasProperty shall be used (see
Figure 7.2.1.2-1). Note that the class semanticDescriptor is the concept to model
a <semanticDescriptor> resource, while atomDescription is used to model a SD
Original Triple; the atomDescription has four properties describedIn , hasSubject,
hasObject and hasProperty . For example, for a triple like “classX propertyY
classZ” stored in a <semanticDescriptor> resource (which is termed as SD
Original Triple), the following association triples shall be created for building
the association and stored in the SGS; those association triples are termed as
SD Relationship Triples.

atomDescriptionA hasSubject classX
atomDescriptionA hasObject classZ
atomDescriptionA hasproperty propertyY
atomDescriptionA describedIn semanticDescriptorA

Figure 7: Figure 7.2.1.2-1: Association between a SD original triple and the
semanticDescriptor instance

An illustration of such a process is shown in Figure 7.2.1.2-1. As an example,
consider a <semanticDescriptor> resource called <SD-1>, which include 4 SD
Original Triples:

HomeA rdf:type ex:Home.
HomeA ex:hasLocation LocationA.
LocationA ex:hasLatitude "300".
LocationA ex:hasLongitude "200".

When those four SD Original Triple are copied to SGS, the following SD Rela-
tionship Triple shall be shall be generated:

@PREFIX sd: <http://semanticDescriptor.org>.
atomDescription1 rdf:type sd:atomDescription.
<SD-1> rdf:type sd:semanticDescriptor.
atomDescription1 sd:hasSubject HomeA.
atomDescription1 sd:hasObject ex:Home.

63

atomDescription1 sdhasProperty rdf:type.
atomDescription1 sd:describedIn <SD-1>.
atomDescription2 sd:hasSubject HomeA.
atomDescription2 sd:hasObject LocationA.
atomDescription2 sd:hasProperty ex:hasLocation.
atomDescription2 sd:describedIn <SD-1>.
atomDescription3 sd:hasSubject LocationA.
atomDescription3 sd:hasObject "300".
atomDescription3 sd:hasProperty ex:Latitude.
atomDescription3 sd:describedIn <SD-1>.
atomDescription4 sd:hasSubject LocationA.
atomDescription4 sd:hasObject "200".
atomDescription4 sd:hasProperty ex:hasLongtitude.
atomDescription4 sd:describedIn <SD-1>.

7.2.1.3 Create ACP triples and ACP binding triples

7.2.1.3.1 Access Control Ontology In order to represent an ACP in a
semantic form, the Access Control Ontology is introduced, which is shown
in Figure 7.2.1.3.1-1. This ontology is defined by following how an oneM2M
<accessControlPolicy> resource is specified in oneM2M TS-0001 [1], where an
access-control-rule-tuple consists of parameters such as accessControlOriginators,
accessControlOperations, and accessControlContexts. Accordingly, this ontology
defines two new classes:

• accessControlPolicy; and
• accessControlRule.

In addition, five new properties (i.e. hasACPRule, hasACOriginator, hasACOp-
erations, hasACContexts and appliedTo) are defined. More details about those
terms are introduced as follows:

• The property hasACPRule is used to link an accessControlPolicy instance
with an accessControlRule instance. Properties hasACOriginator, hasAC-
Operations and hasACContexts (optional) basically describe an accessCon-
trolRule instance and are used to specify who shall issue what operations
under which conditions. As these triples describe the ACP themselves,
they are referred to as ACP Triples.

• The property appliedTo is used to describe which <semanticDescriptor>
resource an accessControlPolicy instance shall be applied to. As these
triples bind <accessControlPolicy> and <semanticDescriptor>, they are
referred to as ACP-SD Binding Triples.

7.2.1.3.2 Example of Using Access Control Ontology Figure 7.2.1.3.2-1
shows an example of the eHealth Ontology Reference Model, which will be used
to develop the SGS example in Figure 7.2.1.3.2-2.

64

Figure 8: Figure 7.2.1.3.1-1: Access control ontology model

Figure 7.2.1.3.2-2 describes an example of ACP Triples and ACP-SD Binding
Triples in the SGS, based on the <semanticDescriptor> resource example shown
in Figure 7.2.1.1-1 and the Access Control Ontology defined in Figure 7.2.1.3.1-
1. In this example, there are two patients Jack and Alice; their doctors are
John and Steve, respectively. There are three blood pressure meansurement
samples (i.e. Sample1 for Jack, Sample2 and Sample3 for another patient3).
Corresponding triples are shown in black text in Figure 7.2.1.3.2-2, which are
generated based on the eHealth Ontology Reference Model in Figure 7.2.1.3.2-1.

The triples in red text in Figure 7.2.1.3.2-2 are added for access control purpose
according to the proposed Access Control Ontology model in Figure 7.2.1.3.1-
1, when new ACPs are created or updated. In this example, it is assumed
two access control polices be created. First, two <semanticDescriptor> re-
sources are described (i.e. semanticDescriptor1 contains Sample1 and Sample2,
while semanticDescriptor2 contains Sample3. Then, two access control policies
are defined (i.e. accessControlPolicy1 is applied to semanticDescriptor1, while
accessControlPolicy2 is applied to both semanticDescriptor1 and semanticDe-
scriptor2). Next, the detailed Access Control Rules for accessControlPolicy1 and
accessControlPolicy2 are described:

• accessControlPolicy1 has two accessControlRules, which states that 1)
AE-ID-1, AE-ID-2, and AE-ID-3 can RETRIEVE and DISCOVER triples
in the semanticDescriptor which accessControlPolicy1 is applied to (i.e. se-
manticDescriptor1); 2) AE-ID-1 and AE-ID-3 can CREATE, UPDATE, or
DELETE triples in the semanticDescriptor which accessControlPolicy1 is
applied to (i.e. semanticDescriptor1).

• For accessControlPolicy2, only one accessControlRule is defined; this ac-
cessControlRule states that AE-ID-1 and AE-ID-2 can DISCOVER triples
in the semanticDescriptor which accessControlPolicy2 is applied to (i.e. se-
manticDescriptor1 and semanticDescriptor2).

7.2.1.4 Conduct semantic operations with direct ACP control This
clause is to introduce more details on implementing Task-3 as discussed in clause
7.2.1.1. This clause uses semantic query as an example of semantic operatoins
to be excuted with direct ACP control in the SGS.

65

Figure 9: Figure 7.2.1.3.2-1: eHealth ontology reference model

66

Figure 10: Figure 7.2.1.3.2-2: eHealth triples in the SGS

67

When the Hosting CSE receives a SPARQL query from the Originator, it shall:

1. add the access control related patterns according to the ID of the Originator
and the request operation to be conducted (e.g. semantic discovery) into
the received SPARQL statement;

2. add ACP-SD binding related patterns into the received SPARQL statement
(i.e. constraints on ACP-SD Binding Triples). For each triple pattern
contained in the original SPARQL query statement, a new ACP-SD binding
triple pattern shall be added;

3. add SD relationship related patterns (i.e. constraints on SD Relationship
Triples) to the received SPARQL statement. For each triple in the original
SPARQL query statement, four new triple patterns shall be added to
describe the SD relationship; and

4. execute the revised SPARQL statement to make query on the SGS.

For example, in the scenario of the example in Figure 7.2.1.3.2-2, when AE-ID-3
sends the following SPARQL query request to the Hosting CSE:

select distinct ?sample ?sValue ?dValue
where
{

?sample rdf:type ex:BPMeasurementSample .
?sample ex:sValue ?sValue .
?sample ex:dValue ?dValue .

}

The Hosting CSE shall add some access control related statements according to
the ID (i.e. AE-ID-3) of the Originator and the request operation (i.e. DISCOV-
ERY) of the query, the revised SPARQL query is given as below (red text for
ACP constraints, blue text for ACP-SD binding constraints, and orange text for
SD relationship constraints):

select distinct ?sample ?sValue ?dValue
where
{

?accessControlRule acp:hasACOriginator "AE-ID-3" . #---
?accessControlRule acp:hasACOperations "DISCOVERY" . # |---> ACP Triples
?accessControlPolicy acp:hasACPRule ?accessControlRule . #---

?accessControlPolicy acp:appliedTo ?semanticDescriptor1 . #---
?accessControlPolicy acp:appliedTo ?semanticDescriptor2 . # |---> ACP-SD Binding Triples
?accessControlPolicy acp:appliedTo ?semanticDescriptor3 . #---

?atomDescription1 sd:describedIn ?semanticDescriptor1 . #---
?atomDescription1 sd:hasSubject ?sample . # |
?atomDescription1 sd:hasObject ex:BPMeasurementSample . # |
?atomDescription1 sd:hasProperty rdf:type . # |
?atomDescription2 sd:describedIn ?semanticDescriptor2 . # |

68

?atomDescription2 sd:hasSubject ?sample . # |---> SD Relationship Triples
?atomDescription2 sd:hasObject ?sValue . # |
?atomDescription2 sd:hasProperty ex:sValue . # |
?atomDescription3 sd:describedIn ?semanticDescriptor3 . # |
?atomDescription3 sd:hasSubject ?sample . # |
?atomDescription3 sd:hasObject ?dValue . # |
?atomDescription3 sd:hasProperty ex:dValue . #---
?sample rdf:type ex:BPMeasurementSample .
?sample ex:sValue ?sValue .
?sample ex:dValue ?dValue .

}

Next, the revised SPARQL query statement is excuted within the SGS. Since
ACP have already been reprensented in a semantical form, the query result of
the revised SPARQL query is the desried result with enforced direct acceess
control. Figure 7.2.1.4-1 shows the SPARQL query result in the above example
over the eHealth SGS in Figure 7.2.1.3.2-2. According to the access control
triples added to the SGS (i.e. red text in Figure 7.2.1.3.2-2), AE-ID-3 is only
allowed to DISCOVER samples included in semanticDescriptor1 (i.e. Sample1
and Sample2). As a result, the returned result for SPARQL query in Figure
7.2.1.4-1 presents the selected content of Sample1 and Sample2.

Figure 11: Figure 7.2.1.4-1: Example for eHealth semantic query result with
access control

7.2.1.5 Synchronization ACP triples and SD-related triples in the SGS
with the resource tree

7.2.1.5.1 Introduction When making ACP policies/rules be also available
in a semantical form (i.e. ACP Triples) in the SGS for supporting direct access
control, synchronization between <accessControlPolicy> resources at the Hosting
CSE and ACP Triples at the SGS is required. Depending on different cases,

69

the Hosting CSE shall perform the following tasks in order to maintain such
synchronization:

• When a new <accessControlPolicy> resource is created, the Hosting CSE
shall generate new ACP Triples according to the ACP ontology and stores
these new ACP Triples in the SGS (see clause 7.2.1.5.2).

• When the privileges attribute of an existing <accessControlPolicy> resource
is updated, the Hosting CSE shall generate new ACP Triples and update
corresponding old ACP Triples at the SGS accordingly (see clause 7.2.1.5.3).

• When an existing <accessControlPolicy> resource is deleted, the Hosting
CSE shall remove the corresponding ACP Triples at the SGS (see clause
7.2.1.5.4).

Similar to ACP Triples, others such as SD Original Triples, SD Relationship
Triples, and ACP-SD Binding Triples shall be synchronized. Depending on
different cases, the Hosting CSE shall perform the following tasks in order to
maintain such synchronization:

• When a <semanticDescriptor> is created:
– In this case, the Hosting CSE shall generate SD Relationship Triples

and ACP-SD Binding Triples and then store them in the SGS (see
clause 7.2.1.5.5).

• When the accessControlPolicyIDs attribute of a <semanticDescriptor>
resource changes:

– In this case, the Hosting CSE shall generate new ACP-SD Binding
Triples and use them to update corresponding old ACP-SD Binding
Triples in the SGS. This case may apply also when the accessCon-
trolPolicyIDs attribute of the parent changes (see clause 7.2.1.5.6).

• When the descriptor attribute of a <semanticDescriptor> resource changes:
– In this case, the Hosting CSE shall generate new SD Relationship

Triples and use them to update old SD Relationship Triples in the
SGS (see clause 7.2.1.5.7).

• When a <semanticDescriptor> resource is deleted:
– In this case, the Hosting CSE shall delete all corresponding SD

Original Triples, SD Relationship Triples and ACP-SD Binding Triples
from the SGS (see clause 7.2.1.5.8).

7.2.1.5.2 Procedure for creating ACP triples when a new <accessCon-
trolPolicy> resource is created Figure 7.2.1.5.2-1 illustrates the procedure
for creating ACP Triples in SGS, which is triggered when an Originator requests
to create a new <accessControlPolicy> resource at the Hosting CSE.

The following steps shall be performed:

• Step 1: The Originator sends a request to create a new <accessControlPol-
icy> resource to the Hosting CSE. This message contains the representation
of <accessControlPolicy> to be created (e.g. the value of privileges at-
tribute).

70

• Step 2: The Hosting CSE receives the request in Step 1 and, subject to
the Originator access rights verification, shall create the requested <ac-
cessControlPolicy> resource.
> EXAMPLE 1: Assume <acp1> be the newly created ACP resource
and its URI “acp1URI”. Assuming <acp1> has one access control rule
(e.g. acr11) and the URI of the corresponding privileges attribute is
“acr11URI”. For exemplification, assume also that acr11 allows an AE
(“AE-ID-1”) to perform DISCOVERY operations.

• Step 3: The Hosting CSE sends a response to the Originator. > EX-
AMPLE 2: If Step 1 was successful, “acp1URI” will be contained in this
response message.

• Step 4: The Hosting CSE generates corresponding ACP Triples based
on the content of <acp1> and the ACP ontology. > EXAMPLE 3: An
example of ACP Triples for <acp1> resource created in Step 1 is illustrated
in Figure 7.2.1.5.2-2.

– In Figure 7.2.1.5.2-2:
∗ line#1 defines prefix “acp” which will used in lines #2-#6.
∗ line#2 defines a new acp:accessControlPolicy class instance for

<acp1> resource. The subject value of this triple (i.e. acp:acp1)
is “acp1URI”, therefore the subject value of this triple makes
it possible to locate the corresponding resource <acp1>. The
Hosting CSE shall also use “acp1URI” to locate corresponding
triples in the SGS (e.g. when updating existing ACP Triples).

∗ line#3 defines that acp:acp1 instance has an associated access
control rule acr11. The object value of this triple (i.e. acp:acr11)
is “acr11URI”, therefore the object value of this triple, makes
it possible to locate the corresponding privileges attribute of
<acp1> resource. The Hosting CSE shall use “acr11URI” to
locate the corresponding triples in the SGS (e.g. when updating
existing ACP Triples).

∗ line#4 defines that acp:acr11 (i.e. the object on line#3) is an
acp:accessControlRule class instance.

∗ line#5 and line#6 give the values of two properties of acp:acr11
based on the assumptions in this example.
NOTE: The triples on lines #4-#6 define the access control
rule acr11. If <acp1> has more access control rules, addi-
tional access control rules will be defined similarly to those
on lines #4-#6.

– Optionally: The Hosting CSE may add the address of the SGS to the
<accessControlPolicy> resource created in Step 2 in a new attribute,
to enable direct addressing of the triples.

• Step 5: The Hosting CSE sends a SPARQL request to store the ACP
Triples created in Step 4 to the selected SGS. > EXAMPLE 4: The
ACP Triples shown in Figure 7.2.1.5.2-2 will be contained in the SPARQL
request.

• Step 6: The SGS receives the SPARQL request, processes it and saves

71

the ACP Triples into its graph store.
• Step 7: The SGS sends a response back to the Hosting CSE to confirm

the request in Step 6 is successfully executed.

Editor’s Note: Replace with PlantUML Diagram

Editor’s Note: This seems to be the wrong diagram. It is the same as Figure
7.2.1.5.3-1. It is already the wrong diagram in R3 of the spec.

7.2.1.5.3 Procedure for updating ACP triples when an existing <ac-
cessControlPolicy> resource is updated The procedure for updating
ACP Triples in a SGS follows a similar flow to the procedure used when a new
<accessControlPolicy> resource is created. In this case the Originator requests
to update the privileges attribute of an existing <accessControlPolicy> resource,
as shown in Figure 7.2.1.5.3-1.

NOTE: This procedure applies also for updates of the accessCon-
trolPolicyIDs attribute of the <semanticDecriptor> resource.

The following steps shall be performed:

• Steps 1 - 3: Similar to those describing Figure 7.2.1.5.2-1, but reflecting
normal processing of an UPDATE operation. In this case the Originator
triggers an update of the privileges attribute of an existing <accessCon-
trolPolicy> .

• Step 4: Based on the new value of the privileges attribute the Hosting CSE
generates new ACP Triples > EXAMPLE 1: Assume the Originator aims
to update the privileges attribute of <acp1> resource from “DISCOVERY”
to “DISCOVERY” and “RETRIEVE” as the new accessControlOperations .
To implement these changes in Figure 7.2.1.5.2-2 the Hosting CSE can sim-
ply add a new triple e.g. acp:acr11 acp:hasACOperations "RETRIEVE".
Alternatively, the Hosting CSE can replace the triple on Line#6 to the new
triple acp:acr11 acp:hasACOperations "DISCOVERY", "RETRIEVE".

• Step 5: The Hosting CSE sends a SPARQL request to the SGS to update
existing ACP Triples related to <acp1> resource to reflect the update being
requested: > EXAMPLE 2: As described in Step 4, there are two options
to implement this. > > - The Hosting CSE adds a new triple with the fol-
lowing SPARQL request: > > sparql @PREFIX acp:
<http://accessControlPolicy.org>. INSERT DATA {
acp:acr11 acp:hasACOperations "RETRIEVE". } > >
- The Hosting CSE replaces Line#6 in Figure 7.2.1.5.1-2 with
the SPARQL request: > >sparql @PREFIX acp:
<http://accessControlPolicy.org>. DELETE {?acr
acp:hasACOperations ?operation } WHERE { ?acr
acp:hasACOperations ?operation FILTER (?acr=acp:acr11)
} INSERT DATA { acp:acr11 acp:hasACOperations
"DISCOVERY", "RETRIEVE". } >

72

Figure 12: Figure 7.2.1.5.2-1: Procedure for creating ACP triples in the SGS

73

Figure 13: Figure 7.2.1.5.2-2: Example ACP triples corresponding to <acp1>
resource

74

• Step 6: The SGS processes the received SPARQL request and updates
the corresponding ACP Triples.

• Step 7: The SGS sends a response to the Hosting CSE to inform it whether
the request has successfully executed.

Editor’s Note: Replace with PlantUML Diagram

7.2.1.5.4 Procedure for deleting ACP triples when an existing <ac-
cessControlPolicy> resource is deleted The procedure for deleting ACP
Triples in a SGS follows a similar flow to the procedure used when a new <access-
ControlPolicy> resource is created. In this case, the Originator requests to delete
an existing <accessControlPolicy> resource, as shown in Figure 7.2.1.5.4-1.

The following steps shall be performed:

• Steps 1 - 3: Similar to those describing Figure 7.2.1.5.2-1, but reflecting
normal processing of a DELETE operation. In this case the Originator
triggers the deletion of an existing <accessControlPolicy> resource.

• Step 4: The Hosting CSE shall send a SPARQL request to the SGS
to delete existing ACP Triples > EXAMPLE: The following SPARQL
request implements this request: > > sparql @#PREFIX acp:
<http://accessControlPolicy.org>. DELETE { ?acp
?p ?o ?s ?p2 ?acp
?acr ?p1 ?o1 } WHERE {
?acp ?p ?o ?s ?p2
?acp ?acp acp:hasACPRule ?acr ?acr
?p1 ?o1 FILTER (?acp=acp:acp1) }
>

• Step 5: The SGS processes the received SPARQL request and removes
all requested ACP Triples.

• Step 6: The SGS sends a response to the Hosting CSE to inform it whether
the request was successfully executed.

Editor’s Note: Replace with PlantUML Diagram

7.2.1.5.5 Procedure for creating ACP-SD binding triples and SD
relationship triples in SGS Figure 7.2.1.5.5-1 illustrates the procedure for
creating ACP-SD Binding Triples and SD Relationship Triples in SGS, which shall
be triggered when an Originator requests to create a new <semanticDescriptor>
resource.

After checking the access rights and other related security functions, the Hosting
CSE shall create the <semanticDescriptor> resource locally (referred to as sd1
and its URI assumed to be sd1URI). Then, the Hosting CSE shall store all
semantic triples as described in the descriptor attribute of SD1 resource to the
SGS. More importantly, the Hosting CSE shall generate new SD Relationship
Triples and ACP-SD Binding Triples and shall store them to the SGS as well.

75

Figure 14: Figure 7.2.1.5.3-1: Procedure for updating ACP triples in SGS

76

Figure 15: Figure 7.2.1.5.4-1: Procedure for Deleting ACP Triples in the SGS

77

Note that if sd1 has no accessControlPolicyIDs attribute, ACP-SD Binding
Triples shall not be generated.

The following steps shall be performed:

• Step 1: The Originator sends Create _<semanticDescriptor>_
Resource request to the Hosting CSE. It is assumed that the value of
descriptor attribute and accessControlPolicyIDs attribute of <seman-
ticDescriptor> resource will be given in this request message:

– Assume the descriptor attribute contains only one SD Original Triple
“S1 P1 O1”.

– Assume the value of accessControlPolicyIDs is “acp1URI”, i.e. the
access control policy acp1 will be applied.

• Step 2: The Hosting CSE accordingly creates the <semanticDescriptor>
resource (referred to as sd1):

– Assume its URI is sd1URI.
• Step 3: The Hosting CSE sends a response to Originator to inform it if

Step 2 is successfully completed.
• Step 4: Bases don the SD Original Triple contained in the descriptor

attribute of sd1, the Hosting CSE generates SD Relationship Triples.
– In our example, there is only one SD Original Triple, as

shown below: >rdf @PREFIX sd:
<http://semanticDescriptor.org>. sd:sd1 rdf:type
sd:semanticDescriptor. sd:tripleInstance11 rdf:type
sd:atomDescription sd:tripleInstance11 sd:describedIn
sd:sd1 sd:tripleInstnace11 sd:hasSubject
sd:S1. sd:tripleInstnace11 sd:hasProperty
sd:P1. sd:tripleInstnace11 sd:hasObject sd:O1.
>

• Step 5: The Hosting CSE will generate the ACP-SD Binding Triples:
– In our example, since sd1’s accessControlPolicyIDs attribute

points to acp1 resource as shown below: >rdf @PREFIX
sd: <http://semanticDescriptor.org>.
@PREFIX acp: <http://accessControlPolicy.org>.
acp:acp1 rdf:type acp:accessControlPolicy.
sd:sd1 rdf:type sd:semanticDescriptor.
acp:acp1 acp:appliedTo sd:sd1. >

• Step 6: The Hosting CSE sends a SPARQL request to the SGS to store
these SD Relationship Triples and ACP-SD Binding Triples to the SGS.

• Step 7: The SGS processes the SPARQL request and store corresponding
SD Relationship Triples and ACP-SD Binding Triples in the SGS.

• Step 8: The SGS sends a response message to the Hosting CSE to inform
it if the SPARQL request in Step 6 is successfully executed. > NOTE: If
the <semanticDescriptor> resource being created in Step 2 does not have
accessControlPolicyIDs attribute, the accessControlPolicyIDs attribute of
the parent resource may be used or system default access privileges may
be applied. The new ACP-SD Binding Triples will also be generated using

78

either the parent resource’s accessControlPolicyIDs attribute or based on
the default privileges.

Editor’s Note: Replace with PlantUML Diagram

7.2.1.5.6 Procedure for updating ACP-SD binding triples in SGS
Figure 7.2.1.5.6-1 shows the procedure for updating ACP-SD Binding Triples
when the accessControlPolicyIDs attribute of a <semanticDescriptor> resource
is updated. For example, assume the sd1 resource created earlier have its
accessControlPolicyIDs changed from acp1 to acp2; with the ACP Triples for
the resource acp2 as follows:

@PREFIX acp: <http://accessControlPolicy.org>.
acp:acp2 rdf:type acp:accessControlPolicy.
acp:acp2 acp:hasACPRule acp:acr21.
acp:acr21 rdf:type acp:accessControlRule.
acp:acr21 acp:hasACOriginator "AE-ID-2".
acp:acr21 acp:hasACOperations "RETRIEVE".

The following steps shall be performed:

• Step 1: The Originator sends a request to update the resource sd1’s
accessControlPolicyIDs from the URI of the resource acp1 to the URI
of the resource acp2. The URI of the resource acp2 (i.e. acp2URI) is
contained in this request. The URI of the resource sd1 (i.e. sd1URI) is
also contained in this request.

• Step 2: The Hosting CSE checks access rights. If it is allowed, the Hosting
CSE updates sd1’s accessControlPolicyIDs with acp2’s URI given in Step
1.

• Step 3: The Hosting CSE sends a response back to the Originator to
inform it if the request in Step 1 is successful or not.

• Step 4: Since the sd1’s accessControlPolicyIDs is changed, the
Hosting CSE generates a new ACP-SD Binding Triple (“acp:acp2
acp:appliedTo sd:sd1”) to reflect this change. This new ACP-SD Binding
Triple will replace the old ACP-SD Binding Triple (i.e. acp:acp1
acp:appliedTo sd:sd1): rdf (new ACP-SD Binding Triple)
acp:acp2 acp:appliedTo sd:sd1 (old ACP-SD Binding
Triple) acp:acp1 acp:appliedTo sd:sd1

• Step 5: The Hosting CSE sends an SPARQL request to replace
the old ACP-SD Binding Triple in the SGS with the new ACP-SD
Binding Triple as shown in above Step 4. This SPARQL request
for this example is shown below: sparql @PREFIX acp:
<http://accessControlPolicy.org>. @PREFIX sd:
<http:semanticDescriptor.org>. DELETE { ?acp acp:appliedTo
sd:sd1 } WHERE { ?acp acp:appliedTo
sd:sd1 } INSERT DATA { acp:acp2 acp:appliedTo
sd:sd1 . }

79

Figure 16: Figure 7.2.1.5.5-1: Procedure for creating SD relationship triples and
ACP-SD binding triples

80

• Step 6: The SGS processes the SPARQL request and updates the specified
ACP-SD Binding Triples in Step 5.

• Step 7: The SGS sends a response to the Hosting CSE to inform it if
the SPARQL request in Step 5 is successfully performed. > NOTE: If the
accessControlPolicyIDs attribute of the <semanticDescriptor> resource
was empty to start with, its parent resource’s accessControlPolicyIDs may
be enforced. The hosting CSE will apply this step based on updates to
the accessControlPolicyIDs attribute of the parent resource.

Editor’s Note: Replace with PlantUML Diagram

7.2.1.5.7 Procedure for updating SD relationship triples in SGS Figure
7.2.1.5.7-1 shows the procedure for updating SD Relationship Triples when the
descriptor attribute of a <semanticDescriptor> resource is changed. For example,
the descriptor of the sd1 resource created earlier is changed to have two SD
Original Triples (Old one - S1 P1 O1; New one - S2 P2 O2).

The following steps shall be performed:

• Step 1: The Originator sends a request to update the resource sd1’s
descriptor to include one new SD Original Triple (i.e. S2 P2 O2). The
URI of the resource sd1 (i.e. sd1URI) is also contained in this request.

• Step 2: The Hosting CSE checks access rights. If it is allowed, the Hosting
CSE updates sd1’s descriptor attribute by adding one new SD Original
Triple (i.e. S2 P2 O2).

• Step 3: The Hosting CSE sends a response back to the Originator to
inform it if the request in Step 1 is successful or not.

• Step 4: The Hosting CSE generates new SD Relationship Triples below
to reflect this change:

– In our example: rdf sd:tripleInstance12 rdf:type
sd:atomDescription. sd:tripleInstance12 sd:describedIn
sd:sd1 sd:tripleInstance12 sd:hasSubject
sd:S2. sd:tripleInstance12 sd:hasProperty
sd:P2. sd:tripleInstance12 sd:hasObject sd:O2.

• Step 5: The Hosting CSE sends an SPARQL request to replace old SD
Relationship Triples and/or add new SD Relationship Triple in the SGS
with the new SD Relationship Triple generated in above Step 4. This
SPARQL request for this example is shown below: “‘sparql @PREFIX acp:
http://accessControlPolicy.org. @PREFIX sd: http://semanticDescriptor.
org.

INSERT DATA { sd:tripleInstance12 rdf:type sd:atomDescription.
sd:tripleInstance12 sd:describedIn sd:sd1 . sd:tripleInstance12
sd:hasSubject sd:S2 . sd:tripleInstance12 sd:hasProperty sd:P2 .
sd:tripleInstance12 sd:hasObject sd:O2 . } “‘

81

http://accessControlPolicy.org
http://semanticDescriptor.org
http://semanticDescriptor.org

Figure 17: Figure 7.2.1.5.6-1: Procedure for updating ACP-SD binding triples
in the SGS

82

• Step 6: The SGS processes the SPARQL request and adds new SD
Relationship Triples.

• Step 7: The SGS sends a response to the Hosting CSE to inform it if the
SPARQL request in Step 5 is successfully performed.

NOTE: If an old SD Original Triple is removed or updated by a
new SD Original Triple, the corresponding SD Relationship Triples
related to this old SD Original Triple will be removed from the SGS.

The update of triples in the descriptor attribute may be performed also by target-
ing the semanticOpExec attribute of the <semanticDescriptor> parent resource
with a SPARQL query; when this SPARQL query is executed, new SD Original
Triples may be added to the descriptor attribute of the <semanticDescriptor>
resource. In this case Steps 4 - 7 will be performed. More specifically, SPARQL
Update consists of DELETE and ADD operations, so the SD relationship triples
associated with the old original triples will be deleted, and the new ones stored.

Editor’s Note: Replace with PlantUML Diagram

7.2.1.5.8 Procedure for deleting SD relationship triples and ACP-SD
binding triples in SGS Figure 7.2.1.5.8-1 shows a procedure for deleting
SD Relationship Triples and ACP-SD Binding Triples from the SGS, which
could be triggered by the Initiating AE/CSE or the Hosting CSE to delete a
<semanticDescriptor> resource. For example, the sd1 resource created earlier is
removed.

The following steps shall be performed.

• Step 1: The Originator sends “Delete <semanticDescriptor> Resource”
to the Hosting CSE to delete sd1 resource. The URI of sd1 resource
(i.e. sd1URI) is contained in this request.

• Step 2: The Hosting CSE deletes sd1 resource locally.

• Step 3: The Hosting CSE sends a response to the Originator to inform it
if the deletion request in Step 1 is successful.

• Step 4: The Hosting CSE sends an SPARQL request to the SGS to
remove SD Relationship Triples and ACP-SD Binding Triples related to
sd1 resource. The SPARQL will look like: “‘sparql @PREFIX acp: http:
//accessControlPolicy.org. @PREFIX sd: http:semanticDescriptor.org.

DELETE { ?sd ?p ?o ?tripleInstance ?p1 ?o1 ?acp acp:AppliedTo ?sd }

WHERE { ?sd ?p ?o. ?tripleInstance ?p1 ?o1. ?tripleInstance
sd:describedIn ?sd. ?acp acp:AppliedTo ?sd FILTER (?sd = sd:sd1) } “‘

• Step 5: The SGS processes the SPARQL request in Step 4 and removes
corresponding SD Relationship Triples and ACP-SD Binding Triples.

83

http://accessControlPolicy.org
http://accessControlPolicy.org
http:semanticDescriptor.org

Figure 18: Figure 7.2.1.5.7-1: Procedure for updating SD relationship triples in
the SGS

84

• Step 6: The SGS sends a response to the Hosting CSE to inform it if the
SPARQL request in Step 4 is successfully performed.

NOTE: Steps 4 - 6 will also be performed if a SPARQL query targeting
the semanticOpExec attribute of a <semanticDescriptor> resource
results in the deletion of existing SD Original Triples.

Editor’s Note: Replace with PlantUML Diagram

7.3 Semantics Annotation
Semantics annotation is defined as the process to add semantic content (i.e. <se-
manticDescriptor>) to an oneM2M resource (not a <semanticDescriptor> re-
source) as its child resource. This <semanticDescriptor> child resource provides
additional semantic information about the oneM2M resource. An AE or a CSE
shall use the procedures specified in clause 6.1.2 “Create <semanticDescriptor>”
to add <semanticDescriptor> child resource to an oneM2M resource to fulfill
the semantics annotation. In addition, the AE or the CSE can also use the
procedures specified in clause 6.1.4 “Update <semanticDescriptor>” to update
an existing <semanticDescriptor> and in turn update semantics annotation.
Semantics annotation can be conducted for a single data item (e.g. create a
<semanticDescriptor> child resource for a <contentInstance> resource); it can
be also conducted for multiple data items or a data flow (e.g. create <seman-
ticDescriptor> child resource for a <container> resource).

7.4 Semantic Filtering and Discovery
7.4.1 Introduction

NOTE: jIn the following descriptions, the general term semantic
resource is used to refer to <semanticDescriptor> resources and
<contentInstance> resources containing semantic information.

This clause describes semantic discovery procedures on semantic descriptions
represented as RDF triples, given that an overall semantic description (logical
tree) may be distributed across several semantic resources.

Semantic discovery procedures may be performed using RETRIEVE operations
as follows:

Using <semanticFanOutPoint> resource

Targeting any resource other than <semanticFanOutPoint>:

• The receiver begins processing the request by retrieving the <seman-
ticDescriptor> resource of the request target and its descriptor attribute.
Related semantic resources are discovered and accessed according to clause
7.4.2 or clause 7.4.3. The content of related descriptor attributes in the
case of <semanticDescriptor> resources or content attributes in the case
of <contentInstance> resources are added to the content on which the

85

Figure 19: Figure 7.2.1.5.8-1: Procedure for deleting SD relationship triples and
ACP-SD binding triples from the SGS

86

SPARQL request is being executed. Depending on which of the options
described in clauses 7.4.2 or 7.4.3 is chosen, all potentially relevant semantic
content is added before executing the SPARQL request or they are added
when needed during the execution of the SPARQL request.

• The resulting content subject to the SPARQL request is provided to the
SPARQL engine for processing.

Targeting a <semanticFanOutPoint> resource (see also clause 10.2.7.12 in
oneM2M TS-0001 [1]):

• In this case the related semantic resources are the members of the <group>
resource parent of the targeted <semanticFanOutPoint>. Based on the
memberID attribute of the parent <group> resource all the related descrip-
tors are discovered, and those on the <group> hosting CSE are retrieved
together.

• If there are semantic resources stored on a different CSE, individual RE-
TRIEVE requests are sent to each CSE for retrieving the external resources.

• All semantic resources are retrieved based on the respective access control
policies.

• Once all of the related semantic resources have been accessed, the content
of each semantic attribute is added to the content on which the SPARQL
request is being executed.

• The full/enlarged content subject to the SPARQL request is provided to
the SPARQL engine for processing.

Not using <semanticFanOutPoint> resource

Given that an overall semantic description (logical tree) may be distributed
across the semantic resources, there are two methods of constructing the logical
tree in the scope of a semantic discovery targeting any resource other than
<semanticFanOutPoint> :

• If the attribute relatedSemantics is empty or does not exist, the
“Annotation-based method” (using resourceDescriptorLink) detailed in
clause 7.4.2 shall be used.

• If the attribute relatedSemantics is not empty the “Resource link-based
method” (using relatedSemantics) detailed in clause 7.4.3 shall be used.

7.4.2 Annotation-based semantic discovery method

In this option, the links to related <semanticDescriptor> semantic resources are
encoded in the semantic description itself, which is encoded as RDF triples [6]
logically structured as <subject> <predicate> <object>. For this purpose, an
annotation property called onem2m:resourceDescriptorLink is introduced. It is
formally specified as part of the oneM2M Base Ontology defined in [7] and can
be used as a predicate in any RDF triple with any subject and without further
relation to the oneM2M Base Ontology. Only the use of the onem2m namespace
is required to uniquely identify the annotation property.

87

Whenever further information about a semantic instance <X> is stored in another
semantic resource, a new RDF triple <X> onem2m:resourceDescriptorLink <Re-
sourceURL> may be added to this semantic description, where <ResourceURL>
is the URL of the other semantic resource containing additional information
related to <X>. If multiple <semanticDescriptor> resources contain relevant
further information, these can be added to a <group> resource and the <Re-
sourceURL> then refers to the virtual <fanOutPoint> resource of this group,
which will be used for retrieving the aggregated information.

NOTE: The RDF triple syntax in this paragraph is only used for
illustration purposes. The actual encoding of the RDF triples used
in oneM2M is defined in oneM2M TS-0004 [3].

To make use of the onem2m:resourceDescriptorLink property, the evaluation of
semantic queries formulated as SPARQL requests by the SPARQL engine has to
be adapted in the following way:

• The SPARQL request is executed on the content of the semantic description
in the descriptor attribute of the semanticDescriptor resource.

• For each semantic instance matched in the SPARQL request, it is checked
whether one or more onem2m:resourceDescriptorLink annotations exist.

• If this is the case, the execution of the SPARQL request is halted.
• The semantic content of the semantic resource referenced by the

onem2m:semanticDescriptorLink annotations is added to the con-
tent on which the SPARQL request is being executed. If the
onem2m:semanticDescriptorLink annotation references a group, the
additional semantic content is accessed by performing a retrieve request to
the virtual <fanOutPoint> resource referenced.

• The execution of the SPARQL request is continued on the enlarged content.

7.4.3 Resource link-based method

In this option, the links to related semantic resources are specified in the
relatedSemantics attribute.

Processing of the SPARQL engine procedures at the receiver :

• The receiver retrieves the <semanticDescriptor> resource of the request
target.

• Based on the relatedSemantics attribute of the <semanticDescriptor>
resource targeted, all the related semantic resources are discovered, as
follows:

1. If the relatedSemantics attribute includes a list of links, each of the
linked semantic resources are accessed based on the respective access
control policies.

2. If the relatedSemantics points to a <group> resource, the group
members from the memberID attribute are used and each of them is

88

accessed based on the respective access control policies.

• Once all of the related semantic resources have been accessed, the content
of each of the descriptor attribute is added to the content on which the
SPARQL request is being executed.

• The full/enlarged content subject to the SPARQL request is provided to
the SPARQL engine for processing.

7.5 Semantic Queries and Query Scope
NOTE: In the following descriptions, the general term semantic
resource is used to refer to <semanticDescriptor>, <ontology> re-
sources, <contentInstance> resource containing semantic triples, and
any other future resources containing semantic information (e.g. se-
mantic content resources, etc.).

This clause describes semantic query procedures on semantic descriptions repre-
sented as RDF triples, given that an overall semantic description (i.e. a logical
tree) may be distributed across several semantic resources.

In general, semantic queries enable the retrieval of both explicitly and implicitly
derived information based on syntactic, semantic and structural information con-
tained in data (such as RDF data). The result of a semantic query is the semantic
information/knowledge for answering/matching the query. By comparison, the
result of a semantic resource discovery is a list of identified resource URIs.
Detailed comparison aspects between semantic query and semantic resource
discovery are listed in table 7.5-1.

Table 45: Table 7.5-1: Comparison between semantic query and
semantic resource discovery

AspectsSemantic Query Semantic Resource Discovery
ObjectiveThe objective of Semantic Query is

extracting “useful knowledge” over a
set of “RDF data basis”.

Semantic resource discovery is
targeted to discovery of
resources for further resource
use (e.g. CRUD operations).

Technical
Fo-
cus

Semantic Query is a more advanced
feature leveraging semantics to derive
knowledge from distributed semantic
descriptors, based on a query
statement.

Semantic resource discovery is a
resource-oriented feature to
leveraging semantics to enable
sophisticated resource discovery.

Result The semantic query result
(representing the derived
“knowledge”) is provided as semantic
information to answer the query not
limited to resources URIs.

The processed result of a
semantic resource discovery is
mainly to include a list of
identified resource URIs.

89

A complete semantic query operation shall include the following steps:

• Step 1 : The Originator shall be given or form a semantic query statement
(i.e. using SPARQL) based on its needs.

• Step 2 : The Originator shall form a RETRIEVE request including the
semantic query statement in the semantics Filter condition and shall set
the “Semantic Query Indicator” parameter to “TRUE”. The Originator
shall send the RETRIEVE request to a Receiver.

• Step 3 : The Receiver shall execute the semantic query statement con-
tained in the received semantic query request, for which the following
information shall be required: a) the semantic query statement which is
received from the Originator; and b) the RDF data basis. The RDF data
basis is composed of all the RDF triples in scope of the semantic query.
The RDF data basis may be distributed in the resource tree and stored
in different semantic resources. Therefore, the Receiver shall perform
Semantic Graph Scoping (SGS) which is the process of establishing the
“query scope”, i.e. RDF data basis. An illustration of SGS is shown in
Figure 7.5-1 and with two approaches described later.

• Step 4 : Once the RDF data basis is determined through the SGS process,
the Receiver shall apply the semantic query statement to the RDF data
basis, yielding the semantic query result.

• Step 5 : The semantic query result shall be included in a response message
and returned to the Originator.

Editor’s Note: Replace with PlantUML Diagram

The following two approaches may be used for the SGS process in Step 3 above,
in order to decide the semantic query scope of the semantic query:

Approach-1: The scope of the semantic query is provided implicitly.

In Approach-1, a semantic query request message targets any resource (i.e. as
specified by the “To” parameter) and the semantic query shall be executed
relative to this target resource, similarly to other request messages. The scope of
the semantic query is formed through the aggregation of the semantic contents
of the target resource’s descendants. All the contents of semantic resource
descendants of the target resource shall form the RDF data basis for this semantic
query to be executed on. Thus, by targeting a oneM2M regular resource in the
resource tree, the scope of the semantic query is implicitly decided as discussed
above.

Approach-2: The scope of the semantic query is provided explicitly.

In Approach-2 the relevant semantic resources are the members of a <group>
resource. The scope of the semantic query is formed through the aggregation of
the semantic contents of all the group members. In this approach, the request
targets the <semanticFanOutPoint> (as specified by the “To” parameter), i.e.,
the child resources of the <group> resource. As a result, this <group> resource
explicitly specifies the RDF data basis of the semantic query (i.e. the scope

90

Figure 20: Figure 7.5-1: An Illustration of SGS in oneM2M Architecture

91

is explicitly defined by the semantic resources which are the members of the
<group> resource).

When the semantic query scope is explicitly defined by the <group> resource, the
processing stage can be decoupled from the SGS process. For example, without
processing any semantic query, the Receiver (e.g. a CSE) may proactively
aggregate relevant semantic resources together using a <group> resource. The
Originator may first discover various <group> resources and select the one with
the desired RDF data basis, before launching a semantic query request. For
example, the <semanticDescriptor> child resource of <group- 1_>_ resource
may indicate that this group resource includes all the devices deployed in Building-
1. The Originator, whose query is to be limited to Building-1, may then send
its semantic query request to the <semanticFanOutPoint> child resource of the
<group- 1_>_ resource.

In Approach-2, the SGS processing (included in step 3 above of the sematic
query flow) shall include the following steps:

• The Receiver of the semantic query request targeting a <semanticFanOut-
Point> resource shall use the memberIDs attribute of the parent <group>
resource to retrieve all the related semantic information. If there are
descriptors stored on different CSEs, individual RETRIEVE requests are
sent to each CSE for retrieving the semantic information from the external
resources.

• All semantic resources are accessed based on the respective access control
policies. The <semanticFanOutPoint> resource uses membersAccessCon-
trolPolicyIDs attribute in the parent <group> resource for access control
policy validation.

• Once all of the related semantic information has been retrieved (which
forms the RDF data basis for this semantic query), the SPARQL query
statement will be executed on the collected RDF data basis in order to
provide the semantic query result.

The RETRIVE operation targeting a <semanticFanOutPoint> for semantic
queries is detailed in clause 6.2.2.

7.6 Content-related Semantic Resource Discovery and Se-
mantic Query
This clause describes the functionality supporting content-related semantic
resource discovery and semantic query operations, where the SPARQL query
statements pertain also to data content stored in <contentInstance> resources.
For example:

• A semantic resource discovery with the content constraint: “Return URIs
of sensors whose current temperature is greater than 20”.

• A semantic query with the content constraint: “Return the locations of
sensors whose current temperature is greater than 20”.

92

These examples show that semantic resource discovery and semantic query need
semantic representations of actual content which enable a variety of entities in a
system, including:

• Semantic-capable data creators who can directly describe its data in a
semantic form such as RDF triples;

• Semantic-incapable data creators who only can produce raw data stored as
opaque content in the content attribute of the <contentInstance> resource
and rely on other entities to add semantic annotations to the raw data;

• Semantic-capable data consumers who have the semantic resource discovery
and/or semantic query capability;

• Semantic-incapable data consumers who only can retrieve raw data contents
stored in the <contentInstance> resource through pre-configurations.

In order to enable this capability, any information that is originally stored in the
content attribute of a <contentInstance> resource can also be represented as RDF
triples and stored in certain <semanticDescriptor> resources (see [1] clause 9.6.7
for details). The opaque data in the content attribute of a <contentInstance>
supports functionality for semantic-incapable data creators and consumers. The
semantic formats are provided to enable semantic-capable data creators and
consumers and their semantic functionality.

7.7 Semantics Mashup
7.7.1 Introduction

Existing semantic resource discovery in oneM2M can help in discovering various
IoT devices and their data. However, in many application scenarios, the discov-
ered data needs to be further processed (e.g. integrated/orchestrated/combined)
based on a certain application business logic. For example, users may just
be interested in a metric called “weather comfortability index”, which cannot
be directly provided by physical sensors, and in fact can be calculated based
on the original sensory data collected from multiple types of physical sensors
(e.g. temperature and humility sensors).

In general, the above process is called “Semantic Mashup”, which is defined as
a process to discover and collect data from more than one source as inputs,
conduct a kind of business logic-related mashup function over the collected
data, and eventually generate meaningful mashup results. In particular,
semantic mashup emphasizes on leveraging semantic-related technologies
during the entire mashup process. For example, in the oneM2M context, an
normal resource (e.g. a <AE> resource representing a temperature sensor) may
be annotated by semantic descriptions and then they could be discovered and
identified as a potential data source for a specific mashup application through
the semantic resource discovery.

93

The above definition also indicates a fact that a complete semantic mashup
process may involve multiple stages and multiple entities for each stage. Those
entities include:

• Mashup Requestor (MR): The entity which initiates a mashup request
to Semantic Mashup Function for a certain need. In the context of oneM2M,
an AE or a CSE can be an MR.

• Resource Host (RH): The entity which hosts data source(s) for a given
mashup process. In the context of oneM2M, a data source is typically
represented by a oneM2M resource (e.g. a temperature <AE> resource)
and a RH will be a CSE that hosts oneM2M resources.

• Semantic Mashup Function (SMF): The entity which is responsible for
collecting the data inputs from data sources hosted on RHs and mashing
them up to generate the mashup result based on a certain business logic.
In the context of oneM2M, SMF is a Common Service Function.

7.7.2 Semantic Mashup Function (SMF) Description

7.7.2.1 Introduction Semantic mashup function including high-level archi-
tecture and high-level operations will be described in this clause.

7.7.2.2 High-level architecture The high-level architecture of an SMF is
shown in Figure 7.7.2.2-1, which shall contain the following components:

• Semantic Mashup Job Profile (SMJP): Each specific semantic mashup
application has a corresponding SMJP, which not only provides functional-
ity/interaction details for external entities to discover (e.g. MRs), but also
defines the internal working details regarding how to realize this mashup
application (e.g. the criteria of how to select the qualified data sources as
well as the definition of mashup function). The content of an SMJP has
been defined in the clause 9.6.53 in oneM2M TS-0001 [1].

• Semantic Mashup Instance (SMI): Once an MR identifies a desired
SMJP (which can be analogous to a “job description”, but not a real job),
it can ask SMF to initialize a real mashup process, which corresponds to a
“working instance” of this SMJP and is referred to as a Semantic Mashup
Instance (SMI). In order to do so, the SMF will inject the corresponding
SMJP into the Mashup Engine of SMF for the SMI instantiation, during
which the engine may be involved in: 1) Identifying the qualified data
sources according to the data source criteria as defined in the SMJP; 2)
Collecting data inputs from those identified data sources; 3) Mashing up
the collected inputs by applying mashup functions as defined in the SMJP,
and finally deriving the mashup result. The content of an SMI has been
defined in the clause 9.6.54 in oneM2M TS-0001 [1].

Editor’s Note: Replace with PlantUML Diagram

94

Figure 21: Figure 7.7.2.2-1: High-level architecture of Semantic Mashup Function

7.7.2.3 High-level operations An SMF as introduced in clause 7.7.2.2 may
involve in different tasks/operations for realizing a complete semantic mashup
process. This clause is to introduce those major SMF operations. The high-level
SMF operations are shown in Figure 7.7.2.3-1, where each operation shall be
realized using CRUD operations as specified in the clauses 6.2.2, 6.3.2, 6.4.2 and
6.5.2, respectively:

• Operation 1 - SMJP Discovery: This process is needed when an
MR (e.g. MR-1 in Figure 7.7.2.3-1) tries to discover a desired SMJP
for its need. The procedure defined in the clause 6.3.3 for retrieving a
<semanticMashupJobProfile> shall be leveraged for discovering <seman-
ticMashupJobProfile> resources based on resource discovery procedures as
defined in oneM2M TS-0001 [1].

• Operation 2 - SMI Creation: This process is needed when an MR
already identified a desired <semanticMashupJobProfile> resource, but
there is no corresponding SMI available for use. To implement this opera-
tion, an MR shall leverage the procedure defined in the clause 6.4.2 to send
an SMI creation request to the CSE hosting SMF in order to instantiate a
new SMI (i.e. <semanticMashupInstance> resource) for the desired SMJP.
Alternatively, the SMF can also create a new SMI by itself instead of being
triggered by the SMI creation request from the MR.

• Operation 3 - Mashup Member Identification: This process is needed
when an SMF tries to identify the qualified mashup members (i.e., data
sources) for a given SMI, by referring to the criteria as defined in the
corresponding SMJP of this SMI (i.e. the memberFilter attribute of a
<semanticMashupJobProfile> resource). Since in the oneM2M context,

95

data sources (such as sensors) are normally represented as oneM2M re-
sources hosted by RHs, this operation shall be implemented using semantic
resource discovery mechanism as defined in clause 7.4.

• Operation 4 - Mashup Result Retrieval: This process is needed when
an MR tries to retrieve the mashup result from a specific SMI. For a
given SMI, it may involve in multiple rounds for mashup result generation
especially when the mashup result needs to be refreshed periodically.
For each round, the SMF shall collect new data inputs from identified
mashup members (via Operation 5) and generate new mashup result
which will be stored in the child resource <semanticMashupResult> of
corresponding <semanticMashupInstance> resource. There are several
alternatives for generating semantic mashup results as defined by the
resultGenType attribute of an <semanticMashupInstance> resource in the
clause 9.6.54 in oneM2M TS-0001 [1], for example:

– Option 1: After an SMI is created, the SMF proactively and period-
ically runs the mashup result generation; each time before generating
new mashup result, the SMF shall use Operation 5 to collect data in-
puts from mashup members. Whenever a new mashup result becomes
available, it shall be stored in a <semanticMashupResult> resource
and be exposed to MRs for access.

– Option 2: The SMF shall generate mashup result only after receiving
an explicit request from an MR (i.e. using the procedure defined in the
clause 6.5.2). The benefit of this approach is that SMF works in an
on-demand way, which may reduce overhead as compared to Option
1. However, the downside is that it leads to longer waiting time for an
MR before the up-to-date mashup result becomes available because
data re-collection and mashup result generation will not be triggered
until the SMF receives a request from the MR.

• Operation 5 - Data Input Collection and Mashup Result Gener-
ation: This process is needed when an SMF tries to generate a mashup
result for a given SMI. Note that Operation 3 focuses on how to identify
the mashup members while Operation 5 focuses on how to collect data
inputs from those identified/qualified mashup members. Operation 5 shall
be implemented using resource retrieval mechanism as defined in oneM2M
TS-0001 [1]. In addition, the working mechanism used for Operation 4 as
mentioned above will affect how Operation 5 is conducted by the SMF.

• Operation 6 - SMI Discovery and Re-use: An SMI can be discovered,
re-used and shared among different MRs. For example, the same SMI of
a weather reporting mashup application for New York City Area can be
shared by different users asking weather information for this area. Accord-
ingly, Operation 6 is needed when an MR (e.g. MR-2 in Figure 7.7.2.3-1)
tries to discover whether there is already an available/desired SMI ready
for use. Since a given SMI is exposed as a <semanticMashupInstance>
resource, existing resource discovery mechanism in oneM2M TS-0001 [1]
shall be leveraged to discover a desired SMI from the Hosting CSE. This
approach leads to less processing overhead, since other MRs do not need

96

to require the SMF to generate a new SMI (therefore Operation 2 and 3
are not needed).

7.8 Semantics-based Data Analytics
The procedures are not fully defined in this release.

7.9 Ontology Management
In general, the oneM2M system needs to represent knowledge as a hierarchy of
concepts (ontologies), either external or internal to the oneM2M domain, using
a shared vocabulary to denote the classes, properties and interrelationships of
those concepts. Storage, discovery and management of ontologies (including
both oneM2M Base Ontology and external ontologies e.g. SSN [i.1], SAREF
[i.2]) within the oneM2M platform are key for supporting basic and advanced
semantic functionalities within the oneM2M platform.

An ontology repository as represented by a <ontologyRepository> resource is
capable of storing multiple ontologies in the unified languages adopted by the
oneM2M system, e.g. RDFS/OWL. Each of the ontology under management is
represented as an <ontology> resource in the oneM2M system. An <ontology>
resource may contain the full representation of an ontology or the IRI reference
to it. SPARQL queries can be applied directly on the <ontology> resource to
perform semantic query and triple-level update.

An ontology repository may also provide the semantic validation service (see more
in clause 7.10) via the <semanticValidation> child virtual resource. The service is
triggered by sending a UPDATE request that contains the <semanticDescriptor>
resource to be validated to the <sematnicValidation> virtual resource.

The resource type definitions of <ontologyRepository>, <ontology> and <se-
manticValidation> are specified in oneM2M TS-0001 [1], while the corresponding
resource procedures are specified in clause 6 of the present document.

7.10 Semantic Validation
7.10.1 Introduction

The <semanticDescriptor> resource contains a descriptor attribute which can
store any RDF triples as the semantic description (i.e. annotation) of the associ-
ated resource (usually the parent resource of the <semanticDescriptor>). In
the same time, <semanticDescriptor> resource may also contain an ontologyRef
attribute, which is a reference (URI) of the ontology used to represent the infor-
mation that is stored in the descriptor attribute. Normally, the triples stored in
the descriptor attribute should be compliant with the ontology referenced by
the ontologyRef attribute. However, there is no guarantee that an issuer (e.g. an
AE) which creates or updates the <semanticDescriptor> will always provide the
consistent information. In case the semantic description (as triples in descriptor

97

Figure 22: Figure 7.7.2.3-1: High-level operations for Semantic Mashup Function

98

attribute) is not compliant with the referenced ontology, it basically means the
<semanticDescriptor> is not valid and cannot be used by the AE and/or CSE
properly e.g. for semantic query or reasoning.

To solve the potential inconsistency between the <semanticDescriptor> resources
and the referenced ontology, two message flows of semantic validation are specified
in the following clauses.

7.10.2 Semantic validation independent of <semanticDescriptor>
resource operation

Figure 23: Figure 7.10.2-1: Message flow for semantic description validation
independent
of <semanticDescriptor> resource operation

Editor’s Note: Replace with PlantUML Diagram

This flow can be used independent of <semanticDescriptor> resource operation.
For example, an AE can validate a <semanticDescriptor> resource after retriev-
ing it from a hosting CSE, so as to ensure the validity of the RDF triples in the
retrieved resource before using it in the application layer process (e.g. reasoning).
An AE or a CSE may also choose to validate a <semanticDescriptor> resource
representation before actually creating it in the oneM2M system.

This flow can also be used as a part of the semantic validation procedure during
a <semanticDescriptor> resource Create or Update operation as specified in
clause 7.10.3.

Step 1. The Issuer (e.g. an AE or CSE) shall send a semantic validation
request to the ontology hosting CSE of the referenced ontology according to
ontologyRef attribute of the <semanticDescriptor> resource to be validated.

99

The request shall be an Update request addressing the <semanticValidation>
virtual resource of the ontology hosting CSE as specified in oneM2M TS-0001
[1]. It shall contain the <semanticDescriptor> resource representation to be
validated, which includes the semantic description (descriptor attribute), the
URI of the referenced ontology (ontologyRef attribute) against which to validate,
and potentially URIs (relatedSemantics attribute, or triples with annotation
property_m2m:resourceDescriptorLink_ in the_descriptor_ attribute) to other
linked <semanticDescriptor> resources that are also incorporated for validation.

Step 2. After receiving the semantic validation request, the ontology host-
ing CSE shall retrieve any linked <semanticDescriptor> resources (including
the semantic description - descriptor and the URI of the referenced ontology -
ontologyRef) according to the relatedSemantics attribute and triples with an-
notation property m2m:resourceDescriptorLink in the_descriptor_ attribute
of the <semanticDescriptor> resource in the request. In case the linked <se-
manticDescriptor> resources are further linked to more <semanticDescriptor>
resources, the ontology hosting CSE shall repeat this step iteratively to retrieve
all linked <semanticDescriptor> resources. In case the ontology hosting CSE
cannot retrieve the linked <semanticDescriptor> resources (due to access right
control or other exceptional reasons) within a reasonable time (according to local
policy), skip Step 3.

Step 3. The ontology hosting CSE shall use the referenced ontologies (indicated
by the ontologyRef attribute) of the received <semanticDescriptor> resource and
the linked <semanticDescriptor> resources to validate the semantic description
of the received <semanticDescriptor> resource and the linked <semanticDe-
scriptor> resources all together. The aspects to be checked in semantic validation
is specified in clause 7.10.4.

Step 4. The ontology hosting CSE shall return the validation response to the
Issuer. In case Step 3 succeeds, the response code shall indicate success of
validation, otherwise (including Step 3 is skipped due to Step 2 fails), the
response shall indicate failure of validation.

7.10.3 Semantic validation triggered when Create or Update a <se-
manticDescriptor> resource

Editor’s Note: Replace with PlantUML Diagram

Step 1. The issuer shall send a Create or Update request to the hosting CSE of
a <semanticDescriptor> resource (called <semanticDescriptor> hosting CSE).
The request shall contain the <semanticDescriptor> resource representation,
which includes a validationEnable attribute (set to ‘true’) to trigger the semantic
validation process, the semantic description (descriptor attribute), the URI
of the referenced ontology (ontologyRef attribute) against which to validate,
and potentially URIs (relatedSemantics attribute, or triples with annotation
property_m2m:resourceDescriptorLink_ in the_descriptor_ attribute) to other
linked <semanticDescriptor> resources that are also incorporated for validation.

100

Figure 24: Figure 7.10.3-1: Message flow for semantic description validation
triggered by <semanticDescriptor> resource Create/Update

101

Step 2. After receiving the request, the <semanticDescriptor> hosting CSE
shall firstly check if semantic validation is needed according to the value of the
validationEnable attribute. If true, it shall further check if the addressed <se-
manticDescriptor> resource is linked to any other remote <semanticDescriptor>
resources according to the URIs in the relatedSemantics attribute or triples with
annotation property m2m:resourceDescriptorLink in_descriptor_ attribute. If
no, the procedure goes to Case 1 (Step 3a to 4a), otherwise, goes to Case 2
(Step 3b to 6b).

NOTE: The <semanticDescriptor> hosting CSE may override the
value of the validationEnable attribute according to its local policy so
as to enforce or disable the following semantic validation procedures
regardless of the requested value from the issuer.

Case 1: stand-alone <semanticDescriptor>

Step 3a. The <semanticDescriptor> hosting CSE shall retrieve the referenced
ontology representation according to the URI in the ontologyRef attribute of
the addressed <semanticDescriptor> resource from the ontology hosting CSE
(which hosts the referenced ontology). In case the ontology representation cannot
be retrieved (due to access right control or other exceptional reasons), skip Step
4a.

Step 4a. The <semanticDescriptor> hosting CSE shall use the retrieved refer-
enced ontology to validation the semantic description (the triples in descriptor
attribute) of the addressed <semanticDescriptor> resource. The aspects to be
checked in semantic validation is specified in clause 7.10.4.

Case 2: linked <semanticDescriptor>

Step 3b. This step shall follow Step 1 of figure 7.10.2-1, wherein the <seman-
ticDescriptor> hosting CSE shall act as the Issuer and the <semanticDescriptor>
resource to be validated is the addressed <semanticDescriptor> resource in the
received Create or Update request.

Step 4b. This step shall follow Step 2 of figure 7.10.2-1.

Step 5b. This step shall follow Step 3 of figure 7.10.2-1.

Step 6b. This step shall follow Step 4 of figure 7.10.2-1, wherein the response
is sent to the <semanticDescriptor> hosting CSE.

Step 7. The <semanticDescriptor> hosting CSE shall perform the normal
operation (Create or Update) on the addressed <semanticDescriptor> resource
according to the original request from the issuer. In addition, based on the
validation result of Step 4a (in Case 1) or the validation response received in
Step 6b (in Case 2), The <semanticDescriptor> hosting CSE shall update the
semanticValidated attribute properly to reflect the validation status (validated
or not) of the addressed <semanticDescriptor> resource accordingly. If Step
4a is skipped due to Step 3a fails, it’s also considered as not validated.

102

Step 8 . The <semanticDescriptor> hosting CSE shall return the operation
(Create or Update) response to the issuer.

7.10.4 Aspects to be checked in semantic validation

Several aspects shall to be checked in order to make sure that the content of
descriptor attribute of <semanticDescriptor> resource consists of valid RDF
triples and they are indeed capable of interoperating semantically with other
oneM2M resources. Taking into account the nature of semantically annotated
data, three levels of validation can be distinguished:

1. Lexical check. This level of check consists of verifying the correctness of
RDF serialization regarding to the declared type. For example, the <se-
manticDescriptor> resource is marked in XML representation (according
to the descriptorRepresentation attribute) whereas the semantic annotation
(in the descriptor attribute) is indeed serialized in JSON, or the XML
document contains some error that causes parse error, the lexical check
fails.

2. Syntactic checks. After the basic lexical checks, the syntactic check
consists of verifying the correctness of the “syntax” of the RDF triples
represented by the underlined serialization format, more specifically:

• a) Untyped of resources and literals. Here resource refers to
instances of a class, and literal refers to a textual or numerical
value. The type of resource or literal is the link of an annotation
back to the ontology which enables the semantic capabilities.
Any un-typed element presented in an annotation is problematic
towards the semantic interoperability.

• b) Ill-formed URIs. URI is essential and critical for identification
of a resource. They shall be checked against RFC3968 which
defines the generic syntax of URI.

• c) Problematic prefix and namespaces. Namespaces play the
role of linking the annotation to the reference ontologies and
vocabularies, and it shall be consistent with ontologyRef attribute.
If the URI of the namespace is problematic (e.g. wrong URI, URI
contains illegal character), it may cause others to mis-interpret
the data semantics and types. Prefix is a unique reference to
replace the namespaces in the local file. A one-to-one mapping
between the prefix and namespace is essential and shall be checked
to ensure a correct reference.

• d) Unknown classes and properties. A prerequisite of seman-
tic interoperability is that all the resources use a common and
agreed vocabulary. As consequence, if any resource uses in its
annotation a class or property that is not defined in the reference
ontology(ies), other resources would have no way to understand
it, so that the semantic interoperability is impossible.

103

3. Semantic checks. Following a successful syntactic validation, the se-
mantic check consists of verifying the logical consistence of the semantic
annotation regarding to the reference ontology(ies):

• a) Cardinality inconsistency :

– i) Inconsistency of object properties. If the ontology defines
that class A has an object property that can have one and
only one instance of class B, and in the annotation, there are
two instances of B related to one instance of A, there is a
problem.

– ii) Inconsistency of data properties. If the ontology defines
that class A has a data property that can have one and only
one data value, and in the annotation, there are two instances
of the data properties of different value, there is a problem.

• b) Problematic relationship or inheritance. Following the
relationship defined in the reference ontology, if an instance of a
class A is wrongly annotated to be at same time an instance of
class B which is disjoint from class A, there is a conflict and the
instance cannot be resolved by the semantic engine. A concrete
example in detailed in clause 8.3.1 in oneM2M TR-0033 [i.3].

• c) Remaining dependencies. If deleting a property of an instance
of a class for which this property is mandatory, there is a problem.

The validation response returned to the issuer depends on the result of each of
the above tests. To conclude that an annotation is validated, a complete check of
all the above checks shall to be performed and passed. However, as several tests
are independent from others (for example, 3.a and 3.b do not have an impact
on each other), several “validated profiles” may be defined as a subset of all the
aspects to be checked.

7.11 Semantics Reasoning
Semantic reasoning is a mechanism to derive implicit facts that are not explicitly
expressed in the existing knowledge/facts (such as RDF triples) by leveraging
a set of reasoning rules. A Semantic Reasoning Function (SRF) is defined in
this clause in order to support semantic reasoning functionality in the oneM2M
system. The key features of a SRF are shown in Figure 7.11-1:

Feature-1: Enabling semantic reasoning related data

The major functionality of Feature-1 is to enable the semantic reasoning related
data (referring to facts and reasoning rules) by be discoverable and publish-
able/sharable across different entities in the oneM2M system (which is illustrated
as the dark yellow arrow in the Figure 7.11-1). The semantic reasoning related
data can be a Fact Set (FS) and/or a Rule Set (RS):

104

Figure 25: Figure 7.11-1: Key Features of Semantic Reasoning Function (SRF)

105

• A FS refers to a set of facts. For example, a set of RDF triples stored in a
<semanticDescriptor> resource can be regarded as a FS. In general, a FS
can be used as an input for a semantic reasoning process (i.e. an input FS)
or it can be a set of inferred facts as the result of a semantic reasoning
process (i.e. an inferred FS).

• A RS refers to a set of semantic reasoning rules. For example, oneM2M
applications may define their own reasoning rules (user-defined reasoning
rules) for different application needs.

Overall, Feature-1 involves the publishing/discovering/sharing of semantic rea-
soning related data (including both FSs and RSs) through appropriate oneM2M
resources. The general flow of Feature-1 is that oneM2M users (as originators) can
send requests to certain receiver CSEs in order to publish/discover/update/delete
the FS/RS-related resources through the corresponding CRUD operations. Once
the processing is done, the receiver CSE will send the response back to the
originator.

Feature-2: Optimizing other semantic operations with background
semantic reasoning support

The existing semantic operations supported in the oneM2M system (e.g., semantic
resource discovery and semantic query) may not yield desired results without
semantic reasoning support. The major functionality of Feature-2 of SRF is to
leverage semantic reasoning as a “background support” function to optimize
other semantic operations (which are illustrated by the pink arrows in the Figure
7.11-1). In this case, users trigger/initiate specific semantic operations (e.g., a
semantic query). During the processing of this operation, semantic reasoning
may be further triggered in the background, which is however fully transparent
to the user.

Overall, the general flow of Feature-2 is that oneM2M users (as originators)
can send requests to certain receiver CSEs for the desired semantic operations
(such as semantic resource discovery, semantic query, etc.). During the request
processing, the receiver CSE, assuming it supports SRF, can further leverage the
reasoning capability. In general, the reasoning capability of the SRF is realized
by an underlying semantic reasoner. By leveraging the outputs of semantic
reasoning (i.e., reasoning result), the receiver CSE will further produce the
optimal result for the semantic operation as requested by the originator (e.g., the
semantic query result, or semantic discovery result) and then send the response
back to the originator.

Feature-3: Enabling individual semantic reasoning process

oneM2M users (as originators) may also directly interact with the SRF by
triggering an individual semantic reasoning process, which is Feature-3 of the
SRF. When using this feature, a oneM2M user shall first identify the interested
facts (as input FS) as well as the desired reasoning rules based on their application
needs. When the input FS and RS are identified, the oneM2M user shall send
a request to the SRF for triggering a specific semantic reasoning process by

106

specifying the inputs (i.e. the input FS and RS). The SRF will then initiate
a desired semantic reasoning process. Once the SRF works out the semantic
reasoning result, it will be returned to the oneM2M users for further usage.

7.12 Ontology Mapping
7.12.1 Introduction

There are already many standardized or proprietary ontologies defined for various
vertical domains or cross-domain scenarios. Each ontology specifies the common
vocabulary and relationships between concepts within its own namespace, but
may sometimes overlap conceptually with other ontologies due to the independent
design. This is often true if two ontologies are designed for the same knowledge
domain or under a common high level domain. Different terminologies may
mean the same or similar concept (e.g. lamp vs. light), or one is the actually the
sub-class of another (e.g. device vs. thing).

To enable the semantic interoperability between different ontologies, ontology
mapping is a prerequisite. It’s an important ontology management method to
identify the commonality, similarity as well as inclusion relationships between
ontologies, so that the data described in one ontology can be consumed mean-
ingfully by the application who understand only another ontology. Ontology
mapping can also help to build a global knowledge base and enhance the system
intelligence by linking together a collection of ontologies via the anchors of
equal/similar/inclusive concepts.

Ontology mapping can be implemented by either manual approaches or automatic
approaches. For example, in Annex B.1 of oneM2M TS-0012 [5], the ontology
mapping between Base Ontology and SAREF is specified by manually configured
mapping rules (in the format of mapping tables) according to the experts’
common understanding on both ontologies.

However, discovering proper mapping relationships manually is often too labour-
intensive, error-prone, and impractical for large ontologies, especially for non-
standardized and unstable ones. Therefore, oneM2M provides automatic means of
ontology mapping to discover, create and save the mapped relationships between
semantically related ontologies by using industry-proven mapping algorithms,
e.g. the edit distance, language-based similarity, structural-based similarity, or
external- resources-based similarity etc.

The solution is based on the <ontologyMapping> resource to configure the input
parameters for executing the ontology mapping task and to store the mapping
result. Meanwhile, the <ontologyMappingAlgorithmRepository> resource and its
child resources <ontologyMappingAlgorithm> are used to host a collection of
algorithms for automatic ontology mapping that can be selected for individual
ontology mapping tasks. The detailed procedures related to ontology mapping
are specified in clause 6.10, 6.11 and 6.12.

Based on the generated ontology mapping result contained in the <ontologyMap-

107

ping> resource, semantically equivalent operations such as semantic resource
discovery and semantic query can be realized in multi-ontology scenarios as
specified in clause 7.12.2.

7.12.2 Semantic query and semantic resource discovery based on the
ontology mapping result

7.12.2.1 Introduction Semantic query and semantic resource discovery oper-
ations can be enhanced by leveraging the ontology mapping result stored in the
<ontologyMapping> resource, so that an application which understands only one
ontology (e.g. Ontology-A) can get the resulting content or resource described
in another (e.g. Ontology-B).

This feature requires the issuer to provide an additional request parameter -
Ontology Mapping Resources as specified in [1] in a normal semantic query
and semantic resource discovery request. This request parameter contains a list
of resource identifiers of existing <ontologyMapping> resources that are used as
the base of converting the query statement or the semantic description of the
target resources into their equivalents.

The following clause describes the detailed procedures using the example ontology
mapping result in clause 6.10.2.

Note: There is no difference between the semantic query operation
and the semantic resource discovery operation in terms of applying
the feature of ontology mapping in addition to the respective original
procedures. So the following procedures combine the two operations
in to one message flow.

7.12.2.2 Procedures Editor’s Note: Replace with PlantUML Diagram

The detailed message flow is depicted in Figure 7.12.2.2-1 and explained as
follows:

1. The hosting CSE (e.g. an oneM2M platform) receives a semantic query (or
semantic resource discovery) request from an Originator (e.g. an oneM2M
application). The request shall carry a semanticsFilter request pa-
rameter that contains the original query statement described in the first
ontology (e.g. Ontology-A), as well as an Ontology Mapping Resources
request parameter that contains the resource identifiers of one or multiple
<ontologyMapping> resources. > Note that the originator may or may not
be the one who created the <ontologyMapping> resources. The use of the
<ontologyMapping> resources is subject to the associated access control
policy against the originator.

For example, the original query statement may be: sparql SELECT
?device WHERE { ?device rdf:type Ontology-A:LightSensor.
}

108

Figure 26: Figure 7.12.2.2-1: The semantic query (or semantic resource discovery)
procedure with ontology mapping

109

2. The hosting CSE shall locate the <ontologyMapping> resources accord-
ing to the resource identifiers in the Ontology Mapping Resources
request parameter, and retrieves the mapping results between the first
ontology (Ontology-A) and the second ontology (Ontology-B) from the
mappingResult attribute of the <ontologyMapping> resources.

For example, the mappingResult may contain the following triple (mapping
relationship): rdf Ontology-A:LightSensor owl:equivalentClass
Ontology-B:Light_Sensor

3. The hosting CSE shall perform the semantic query (or semantic resource
discovery) upon the semantic description of the target resources which ref-
erence the first ontology (Ontology-A) or the second ontology (Ontology-B),
according to the ontology mapping result and the original query statement.
The result shall contain both the original outcome of a normal semantic
query (or semantic resource discovery) operation as well as additional
outcome of the semantic query (or semantic resource discovery) by using
the ontology mapping result. This step comprises the following sub-steps:

• a) The hosting CSE shall perform the semantic query (or semantic
resource discovery) procedure upon the semantic description of
the target resources that reference the first ontology (Ontology-A)
using the original query statement, and collect the outcome.
For example, a <container-x> resource may have a <seman-
ticDescriptor> child resource that references Ontology-A (by
the ontologyRef attribute) and contains the following triple
that matches the original query statement: rdf dev-x
rdf:type Ontology-A:LightSensor.

• b) The hosting CSE shall perform the semantic query (or semantic re-
source discovery) procedure upon the semantic description of the
target resources that reference the second ontology (Ontology-B)
using the ontology mapping result (provided in the <ontologyMap-
ping> resources), and get the additional outcome. This step may
be performed in two different approaches that are implementation
specific (non-normative):

– Approach-1: converting the semantic query statement using the
ontology mapping result.

The hosting CSE can determine the equivalent query statement
described in the second ontology (Ontology-B) by converting
from the original query statement described in the first ontol-
ogy (Ontology-A), according to the ontology mapping result
between the first ontology (Ontology-A) and the second ontology
(Ontology-B). This can be done by replacing all the ontology
class and properties of the first ontology (Ontology-A) in the
query statement with the corresponding equivalents of the second
ontology (Ontology-B).

110

According to the examples above, the equivalent query statement
becomes: sparql SELECT ?device WHERE { ?device
rdf:type Ontology-B:Light_Sensor. } The hosting CSE
then performs the semantic query (or semantic resource dis-
covery) procedure upon the semantic description of the target
resources that reference the second ontology (Ontology-B) using
the equivalent query statement, and collect the second query (or
semantic resource discovery) result.

For example, a <container-y> resource may have a <seman-
ticDescriptor> child resource that references Ontology-B (by
the ontologyRef attribute) and contains the following triple that
matches the converted equivalent query statement:

dev-y rdf:type Ontology-B:Light_Sensor.

– Approach-2: converting the semantic description of the target
resources according to the <ontologyMapping> resources.

The hosting CSE can determine the equivalent semantic descrip-
tion in the first ontology (Ontology-A) for the target resources
which reference the second ontology (Ontology-B), by converting
from the original semantic description in the second ontology
(Ontology-B) according to the ontology mapping result. This can
be done by replacing all the ontology class and properties of the
second ontology (Ontology-B) in the related <semanticDescrip-
tor> resources of the target resources into the equivalents of the
first ontology (Ontology-A).

For example, a <container-y> resource may have a <seman-
ticDescriptor> child resource that references Ontology-B (by the
ontologyRef attribute) and contains the following triple:

dev-y rdf:type Ontology-B:Light_Sensor.

This triple is then converted into the equivalent triple in Ontology-
A that matches the original query statement:

dev-y rdf:type Ontology-A:Light_Sensor.

The hosting CSE then performs the semantic query (or semantic
resource discovery) procedure upon the converted equivalent
semantic description using the original query statement, and
collect the second query (or semantic resource discovery) result.

4. The hosting CSE shall combine the query (or semantic resource discovery)
results from both step 3a and step 3b, and return the combined results to
the originator.

For example, in the case of semantic query, the results are the IRIs of
dev-x and dev-y. In the case of semantic resource discovery, the results are

111

the resource identifiers of <container-x> and <container-y>.

8 History
This clause shall be the last one in the document and list the main phases (all
additional information will be removed at the publication stage).

Publication
history

Publication
history Publication history

V4.0.0 June
2019

Release-4 Development
Full copied from and with the same content as TS-0034
V3.0.2

V4.1.0 October
2019

Incorporated the following two contributions towards
TS-0034 as agreed in oneM2M TP42:
SDS-2019-0461R02
SDS-2019-0484R02

V4.1.1 Jan. 2020 Incorporated the following one contribution towards
TS-0034 as agreed in oneM2M TP43:
SDS-2019-0673

V5.0.0 Mai
2024

Release-5 Development

Draft
history

Draft
history Publication history

V5.0.0 June
2024

Release-5

112

	Contents
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Abbreviations
	4 Conventions
	5 Architectural Model and Concepts
	6 Basic Resource Procedures
	6.1 <semanticDescriptor> Operations
	6.1.1 Introduction
	6.1.2 Create <semanticDescriptor>
	6.1.3 Retrieve <semanticDescriptor>
	6.1.4 Update <semanticDescriptor>
	6.1.5 Delete <semanticDescriptor>

	6.2 <semanticFanOutPoint> Operations
	6.2.1 Introduction
	6.2.2 Retrieve <semanticFanOutPoint>

	6.3 <semanticMashupJobProfile> Operations
	6.3.1 Introduction
	6.3.2 Create <semanticMashupJobProfile>
	6.3.3 Retrieve <semanticMashupJobProfile>
	6.3.4 Update <semanticMashupJobProfile>
	6.3.5 Delete <semanticMashupJobProfile>

	6.4 <semanticMashupInstance> Operations
	6.4.1 Introduction
	6.4.2 Create <semanticMashupInstance>
	6.4.3 Retrieve <semanticMashupInstance>
	6.4.4 Update <semanticMashupInstance>
	6.4.5 Delete <semanticMashupInstance>

	6.5 <mashup> Operations
	6.5.1 Introduction
	6.5.2 Retrieve <mashup>

	6.6 <semanticMashupResult > Operations
	6.6.1 Introduction
	6.6.2 Retrieve <semanticMashupResult>
	6.6.3 Delete <semanticMashupResult>

	6.7 <ontologyRepository> Operations
	6.7.1 Introduction
	6.7.2 Create <ontologyRepository>
	6.7.3 Retrieve <ontologyRepository>
	6.7.4 Update <ontologyRepository>
	6.7.5 Delete <ontologyRepository>

	6.8 <ontology> Operations
	6.8.1 Introduction
	6.8.2 Create <ontology>
	6.8.3 Retrieve <ontology>
	6.8.4 Update <ontology>
	6.8.5 Delete <ontology>
	6.8.6 Semantic query on <ontology> resource via Retrieve

	6.9 <semanticValidation> Operations
	6.9.1 Introduction
	6.9.2 Create <semanticValidation>
	6.9.3 Retrieve <semanticValidation>
	6.9.4 Update <semanticValidation>
	6.9.5 Delete <semanticValidation>

	6.10 <ontologyMapping> Operations
	6.10.1 Introduction
	6.10.2 Create <ontologyMapping> (Ontology Mapping)
	6.10.3 Retrieve <ontologyMapping> (Get the ontology mapping result)
	6.10.4 Update <ontologyMapping> (Ontology Mapping)
	6.10.5 Delete <ontologyMapping>

	6.11 <ontologyMappingAlgorithm> Procedure
	6.12 <ontologyMappingAlgorithmRepository> Procedure
	6.13 <semanticRuleRepository> Operations
	6.13.1 Introduction
	6.13.2 Create <semanticRuleRepository>
	6.13.3 Retrieve <semanticRuleRepository>
	6.13.4 Update <semanticRuleRepository>
	6.13.5 Delete <semanticRuleRepository>

	6.14 <reasoningRules> Operations
	6.14.1 Introduction
	6.14.2 Create <reasoningRules>
	6.14.3 Retrieve <reasoningRules>
	6.14.4 Update <reasoningRules>
	6.14.5 Delete <reasoningRules>

	6.15 <reasoningJobInstance> Operations
	6.15.1 Introduction
	6.15.2 Create <reasoningJobInstance>
	6.15.3 Retrieve <reasoningJobInstance>
	6.15.4 Update <reasoningJobInstance>
	6.15.5 Delete <reasoningJobInstance>

	7 Functional Descriptions
	7.1 Overview
	7.2 Access Control
	7.2.1 Direct ACP control via semantic graph store

	7.3 Semantics Annotation
	7.4 Semantic Filtering and Discovery
	7.4.1 Introduction
	7.4.2 Annotation-based semantic discovery method
	7.4.3 Resource link-based method

	7.5 Semantic Queries and Query Scope
	7.6 Content-related Semantic Resource Discovery and Semantic Query
	7.7 Semantics Mashup
	7.7.1 Introduction
	7.7.2 Semantic Mashup Function (SMF) Description

	7.8 Semantics-based Data Analytics
	7.9 Ontology Management
	7.10 Semantic Validation
	7.10.1 Introduction
	7.10.2 Semantic validation independent of <semanticDescriptor> resource operation
	7.10.3 Semantic validation triggered when Create or Update a <semanticDescriptor> resource
	7.10.4 Aspects to be checked in semantic validation

	7.11 Semantics Reasoning
	7.12 Ontology Mapping
	7.12.1 Introduction
	7.12.2 Semantic query and semantic resource discovery based on the ontology mapping result

	8 History

